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MM 34: Data Driven Materials Science: Interatomic Potentials / Reduced Dimensions

Time: Thursday 15:45–18:30 Location: H45

MM 34.1 Thu 15:45 H45
Constructing Training Sets for Transferable Moment Tensor
Potentials: Application to Defects in Bulk Mg — ∙Marvin
Poul, Liam Huber, Erik Bitzek, and Joerg Neugebauer — Max-
Planck-Institut fuer Eisenforschung
Machine learned interatomic potentials promise to bring quantum me-
chanical accuracy to system sizes that are inaccessible with traditional
QM approaches. Here, we present a set of unary Mg Moment Tensor
Potentials[1] with different speeds and accuracies in the range of 100–
5meV/atom. We focus on understanding the role of the training data
in the fitting process. We discuss several ways in which the structural
complexity of the training structures and a physical understanding of
them helps to design an efficient training set construction. The result-
ing potentials are verified on out-of-fold structures, like vacancies, sur-
faces, and high-symmetry grain boundaries. This work is implemented
as a pyiron[2] workflow and we identify challenges and opportunities
of a fully automated setup to fit machine-learned potentials.

[1]: https://doi.org/10.1088/2632-2153/abc9fe
[2]: https://doi.org/10.1016/j.commatsci.2018.07.043

MM 34.2 Thu 16:00 H45
Active learning and uncertainty quantification for atomic
cluster expansion models — ∙Yury Lysogorskiy, Anton
Bochkarev, and Ralf Drautz — Atomistic Modelling and Simula-
tion, ICAMS, Ruhr-University Bochum, D-44801 Bochum, Germany
Interatomic potentials (IP) are widely used in computational materi-
als science, in particular for simulations that are too computationally
expensive for density functional theory (DFT). Recently the atomic
cluster expansion (ACE) was proposed as a new class of data-driven
IP with basis set completeness. Development of any IP requires numer-
ous iterations and careful selection of training data. Thus automation
of both construction of training dataset as well as IP validation would
significantly speed up the development process. In this work we ap-
ply the Maxvol algorithm for training dataset selection and study the
extrapolation grade metric (Podryabinkin and Shapeev, 2017) in the
context of ACE and compare it to the query-by-committee approach
for uncertainty estimation. These methods allow us to introduce ex-
trapolation control in ACE models and to design different exploration
automated protocols for accurate interatomic potentials development.

MM 34.3 Thu 16:15 H45
Take Two: Δ-Machine Learning for Molecular Co-Crystals
— ∙Simon Wengert1,2, Gábor Csányi3, Karsten Reuter1, and
Johannes T. Margraf1 — 1Fritz Haber Institut der MPG, Berlin,
Germany — 2TU Munich, Germany — 3University of Cambridge, UK
Co-crystals are a highly interesting material class, as varying their
components and stoichiometry in principle allows tuning supramolec-
ular assemblies towards desired physical properties. The in silico pre-
diction of co-crystal structures represents a daunting task, however,
as they span a vast search space and usually feature large unit-cells.
This requires theoretical models that are accurate and fast to eval-
uate, a combination that can in principle be accomplished by mod-
ern machine-learned (ML) potentials trained on first-principles data.
Crucially, these ML potentials need to account for the description of
long-range interactions, which are essential for the stability and struc-
ture of molecular crystals. In this contribution, we present a strategy
for developing Δ-ML potentials for co-crystals, which use a physical
baseline model to describe long-range interactions. The applicability
of this approach is demonstrated for co-crystals of variable compo-
sition consisting of an active pharmaceutical ingredient and various
co-formers. We find that the Δ-ML approach offers a strong and con-
sistent improvement over the density-functional tight binding baseline.
Importantly, this even holds true when extrapolating beyond the scope
of the training set, for instance in molecular dynamics simulations at
ambient conditions.

MM 34.4 Thu 16:30 H45
Magnetic Atomic Cluster Expansion and application to Iron
— ∙Matteo Rinaldi, Matous Mrovec, and Ralf Drautz — In-
terdisciplinary Centre for Advanced Materials Simulation (ICAMS)
The atomic cluster expansion (ACE)[1,2,3] has proven to be a valuable
tool to parametrize complex energy landscapes of pure elements and al-

loys. However, its application to potential energy surfaces determined
also by additional degrees of freedom, such as magnetic moments, has
been still lacking. In particular, ferromagnetic materials cannot be
tackled with the original ACE formalism, where the single-site ener-
gies depend parametrically only on interatomic distances and chemical
species, since these descriptors cannot distinguish between atoms with
different magnetic moments. The solution of this issue was given theo-
retically by Drautz[4], where the ACE formalism was extended to take
into account additional labels of the atomic sites of scalar, vectorial
and tensorial nature by including them in the definition of the atomic
neighbor density. We have employed this formalism to parametrize a
magnetic ACE for the prototypical ferromagnetic element Fe using a
dataset of both collinear and non-collinear magnetic structures calcu-
lated with spin density functional theory. We will show that the new
ACE model is able to describe correctly not only various magnetic
phases of Fe at 0 K but also their finite temperature properties in
good agreement with the reference ab-initio and experimental values.

[1] R. Drautz, Phys. Rev. B 99, 014104. [2] Y. Lysogorskiy et al.,
npj Comput Mater 7, 97 (2021). [3] A. Bochkarev et al., Phys. Rev.
Materials 6, 013804. [4] R. Drautz, Phys. Rev. B 102, 024104.

MM 34.5 Thu 16:45 H45
Kernel Charge Equilibration: Learning Charge Distributions
in Materials and Molecules — ∙Martin Vondrak, Nikhil Ba-
pat, Hendrik H. Heenen, Johannes T. Margraf, and Karsten
Reuter — Fritz-Haber-Institut, Berlin, Germany
Machine learning (ML) techniques have recently been shown to bridge
the gap between accurate first-principles methods and computation-
ally cheap empirical potentials. This is achieved by learning a system-
atic relationship between the structure of molecules and their phys-
ical properties. However, the modern ML models typically repre-
sent chemical systems in terms of local atomic environments. This
inevitably leads to the neglect of long-range interactions (most promi-
nently electrostatics) and non-local phenomena (e.g. charge transfer),
which can lead to significant errors in the description of polar molecules
and materials (particularly in non-isotropic environments). To over-
come these issues, we recently proposed a ML framework for predicting
charge distributions in molecules termed Kernel Charge Equilibration
(kQEq). Here, atomic charges are derived from a physical model using
environment-dependent atomic electronegativities. These models can
be trained to reproduce electrostatic properties (e.g. dipole moments)
of reference systems, computed from first principles. The impact of
different fitting targets on predicted charge distributions is compared.
Furthermore, strategies for fitting to energies are discussed, including
combination of Gaussian Approximation Potential (GAP) with kQEq.

15 min. break

MM 34.6 Thu 17:15 H45
Machine Learning of ab-initio grain boundary Segregation
Energies — ∙Christoph Dösinger1, Daniel Scheiber2, Oleg
Peil2, Vsevolod Razumovskiy2, Alexander Reichmann1, and
Lorenz Romaner1 — 1Montanuniversität Leoben, Department of
Materials Science, Leoben, Austria — 2Materials Center Leoben
Forschung GmbH, Leoben, Austria
Grain-boundary (GB) segregation is an important phenomenon in al-
loys, where the resulting GB excess can strongly influence their prop-
erties, for example induce intergranular fracture or lead to phase
transformations. A fundamental quantity that uniquely describes the
propensity of a solute towards GB segregation is the segregation en-
ergy. It determines the tendency of a solute atom to enrich or deplete
at the GB. This quantity can be directly calculated from first princi-
ples. However, such calculations are computationally expensive and
can become computationally unfeasible as the complexity of the GB
crystal structure increases. The aim of this work is to reduce the
computational cost of GB segregation energies by applying machine
learning methods trained at series of representative DFT calculations
and expanding them to more complex GB structures. The atomic
structure, together with the segregation energies are used to train a
model, which then is employed to predict the segregation energy for
arbitrary segregation sites and GB types. In our work we apply this
method to tungsten alloys. The results show, that this approach in-
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deed gives reliable results for the segregation energies and can be used
to get a complete description of segregation profiles.

MM 34.7 Thu 17:30 H45
Stability of binary precipitates in Cu-based alloys inves-
tigated through active learning and quantum computing
— ∙Angel Diaz Carral1, Xiang Xu2, Azade Yazdan Yar1,
Siegfried Schmauder2, and Maria Fyta1 — 1Institute for Compu-
tational Physics (ICP), Universität Stuttgart, Allmandring 3, 70569,
Stuttgart, Germany — 2Institut für Materialprüfung, Werkstoffkunde
und Festigkeitslehre (IMWF), Pfaffenwaldring 32 70569, Stuttgart,
Germany
Understanding the structure of thermodynamically stable precipitates
is of great interest in material science as they can affect the electri-
cal conductivity and mechanical properties of the matrix to a great
degree. In this work, we use a relaxation-on-the-fly active learning
algorithm in order to scan all possible binary candidates, for different
types and concentrations of alloy elements (mainly Cu, Si, and Ni).
Quantum-mechanical calculations are performed on a small number of
candidates to train and improve the machine-learned potential. The
model is then used to predict the enthalpy of formation of all can-
didates. The stability of binary precipitates, based on predicting the
convex hull, is further assessed by the phonon density of states analysis
calculated by classic and quantum computing.

MM 34.8 Thu 17:45 H45
How to teach my deep generative model to create new
RuO2 surface structures? — ∙Patricia König, Hanna Türk,
Yonghyuk Lee, Chiara Panosetti, Christoph Scheurer, and
Karsten Reuter — Fritz-Haber-Institut der MPG, Germany
Many widely used catalyst systems still hold complicated longstand-
ing structural puzzles that hamper their full atomistic understanding
and thus further knowledge based progress. Here, we address the well-
known RuO2 catalyst for the oxidative conversion of CO exhaust gases
in combustion processes.

To explore the chemical space of RuO2 surface structures, we trained
a Generative Adversarial Network (GAN) that is capable of cheaply
generating diverse structural guesses for novel surface structures. For
the training set, 28,903 RuO2 surface terminations were created with a
grand-canonical basin hopping method. The atomic positions of these
structures were mapped to Gaussian densities on a three-dimensional
grid to generate the GAN input. We demonstrate how two-dimensional
images of cuts through RuO2 structures with inferred lattice lengths
and energy conditioning can be created as a first step to realistic three-
dimensional surface structures.

MM 34.9 Thu 18:00 H45
Data-Driven Design of Two-Dimensional Non-van der Waals
Materials — ∙Rico Friedrich1,2,3, Mahdi Ghorbani-Asl1,
Stefano Curtarolo2, and Arkady V. Krasheninnikov1,4 —

1Helmholtz-Zentrum Dresden-Rossendorf, Dresden — 2Duke Univer-
sity, Durham, USA — 3TU Dresden — 4Aalto University, Aalto, Fin-
land
Two-dimensional (2D) materials are traditionally associated with the
sheets forming bulk layered compounds bonded by weak van der Waals
(vdW) forces. The weak inter-layer interaction leads to a natural struc-
tural separation of the 2D subunits in the crystals, giving rise to the
possibility of mechanical and liquid-phase exfoliation as well as en-
abling the formulation of exfoliability descriptors.

The unexpected experimental realization of non-vdW 2D com-
pounds, for which the previously developed descriptors are not ap-
plicable, opened up a new direction in the research on 2D systems
[1]. Here, we present our recent data-driven search for representatives
of this novel materials class [2]. By screening the AFLOW database
according to structural prototypes, 28 potentially synthesizable candi-
dates are outlined. The oxidation state of the surface cations is found
to regulate the exfoliation energy with low oxidation numbers giving
rise to weak bonding — thus providing an enabling descriptor to ob-
tain novel 2D materials. The candidates showcase a diverse spectrum
of appealing electronic, optical and magnetic features.

[1] A. Puthirath Balan et al., Nat. Nanotechnol. 13, 602 (2018).
[2] R. Friedrich et al., Nano Lett. 22, 989 (2022).

MM 34.10 Thu 18:15 H45
Robust recognition and exploratory analysis of crystal struc-
tures via Bayesian deep learning — ∙Andreas Leitherer, An-
gelo Ziletti, and Luca M. Ghiringhelli — The NOMAD Labo-
ratory at the Fritz Haber Institute and at the Humboldt University of
Berlin, Germany
Atomic-resolution studies are routinely being performed in modern
materials-science experiments. Artificial-intelligence tools are promis-
ing candidates to leverage this valuable – yet underutilized – data
in unprecedented, automatic fashion to discover hidden patterns and
eventually novel physics. Here, we introduce ARISE (Nat. Com-
mun. 2021, https://doi.org/10.1038/s41467-021-26511-5), a crystal-
structure-identification method based on Bayesian deep learning. As a
major step forward, ARISE is robust to structural noise and can treat
more than 100 crystal structures, a number that can be extended on de-
mand. While being trained on ideal structures only, ARISE correctly
characterizes strongly perturbed single- and polycrystalline systems,
from both synthetic and experimental sources. The probabilistic na-
ture of the Bayesian-deep-learning model yields principled uncertainty
estimates, which are found to be correlated with crystalline order of
metallic nanoparticles in electron-tomography experiments. Applica-
tion of unsupervised learning to the internal neural-network represen-
tations reveals grain boundaries and (unapparent) structural regions
sharing interpretable geometrical properties. This work enables the
hitherto hindered analysis of noisy atomic structural data from com-
putations or experiments.
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