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O 43.1 Wed 10:30 S054
Structure of Amorphous Phosphorus from Machine Learning-
Driven Simulations — ∙Yuxing Zhou, William Kirkpatrick,
and Volker L. Deringer — Department of Chemistry, Inorganic
Chemistry Laboratory, University of Oxford Oxford OX1 3QR, UK
Amorphous phosphorus (a-P) has long attracted interest because of
its complex atomic structure, and more recently as an anode material
for batteries. However, accurately describing and understanding a-P
at the atomistic level remains a challenge. In this talk, we show that
a general-purpose Gaussian approximation potential (GAP) model for
phosphorus can be created by machine learning (ML) from a suit-
ably chosen ensemble of quantum-mechanical results. Its accuracy
in describing the amorphous phase is demonstrated via large-scale
molecular-dynamics simulations on the atomic structure of a-P: the
calculated structure factors yield good agreement with earlier exper-
imental evidence. Abundant five-membered rings are found in the
structural model, which are the building block of more complex clus-
ters. We provide new insights into the cluster fragments under pres-
sure: an analysis of cluster fragments, large rings, and voids suggests
that moderate pressure (up to about 5 GPa) does not break the connec-
tivity of clusters, but higher pressure does. Changes in the simulated
first sharp diffraction peak during compression and decompression in-
dicate a hysteresis in the recovery of medium-range order. Our work
provides a starting point for further computational studies of a-P, and
more generally it exemplifies how ML-driven modeling can accelerate
the understanding of disordered functional materials.

O 43.2 Wed 10:45 S054
Realistic Structural Properties of Amorphous SiNx from
Machine-Learning-Driven Molecular Dynamics — ∙Ganesh
Kumar Nayak1, Prashanth Srinivasan2, Juraj Todt3, Ros-
tislav Daniel1, and David Holec1 — 1Department of Materials
Science, Montanuniversität Leoben, Leoben, Austria — 2Franz-Josef-
Strasse 18 — 3Erich Schmid Institute of Materials Science of the Aus-
trian Academy of Sciences, Jahnstrasse 12, Leoben, Austria
Machine-learning(ML)-based interatomic potentials can enable simula-
tions of extended systems with an accuracy that is largely comparable
to DFT, but with a computational cost, that is orders of magnitude
lower. Molecular dynamics simulations further exhibit favorable linear
(order N ) scaling behavior.

Amorphous silicon nitride (a-SiNx) is a widely studied noncrystalline
material, and yet the subtle details of its atomistic structure and me-
chanical properties are still unclear. Due to the small sizes of repre-
sentative models, DFT cannot reliably predict its structural properties
and hence left an anisotropic order parameter. Here, we show that
accurate structural models of a-SiNx can be obtained using an ML-
based inter-atomic potential. Our predictions of structural properties
are validated by experimental values of mass density by X-ray reflec-
tivity measurements and by radial distribution function measured by
synchrotron X- ray diffraction.

Our study demonstrates the broader impact of ML potentials for elu-
cidating structures and properties of technologically important amor-
phous materials.

O 43.3 Wed 11:00 S054
Combined experimental-computational directed sampling ap-
proach to modelling amorphous alumina — ∙Angela Harper1,
Steffen Emge2, Pieter Magusin2,3, Clare Grey2, and An-
drew Morris4 — 1Cavendish Laboratory, University of Cambridg
— 2Department of Chemistry, University of Cambridge — 3Institute
for Life Sciences & Chemistry, Hogeschool Utrecht — 4School of Met-
allurgy and Materials, University of Birmingham
Understanding the electronic and atomic level structure of materials is
imperative for discovering the next generation of solid state electronic
devices. Yet for amorphous materials, it is non-trivial to determine
the exact local ordering. In this talk, I outline a method for modelling
disordered materials, using experimentally directed sampling of static
configurations from ab initio molecular dynamics1. We calculate ex-
perimentally relevant spectra and properties including X-ray absorp-
tion edges, nuclear magnetic resonance chemical shieldings, and the
electronic density of states, with first principles accuracy. This model

is validated on amorphous alumina, a widely used coating material in
electronic devices, and identify two distinct five-fold coordinated ge-
ometries of AlO5, as well as localised states at the conduction band
minimum. By leveraging both experimental and computational data
in our approach we highlight the need for experimentally informed
calculations which lead to a more detailed understanding of complex
materials, and develop an approach that is widely applicable to the
modelling community.
1Harper, AF et al., Under review (2021)
doi.org/10.33774/chemrxiv-2021-qjzbj

O 43.4 Wed 11:15 S054
Structural phases and thermodynamics of BaTiO3 from an
integrated machine learning model — ∙Lorenzo Gigli1, Max
Veit1, Michele Kotiuga2, Giovanni Pizzi2, Nicola Marzari2,
and Michele Ceriotti1 — 1Laboratory of Computational Science
and Modeling (COSMO), Institute of Materials, École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland — 2Theory
and Simulation of Materials (THEOS) and National Centre for Com-
putational Design and Discovery of Novel Materials (MARVEL), École
Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
Modeling the ferroelectric transition of any given material requires
three key ingredients: (1) a model of the potential energy surface, that
describes the energetic response to a structural distortion; (2) the free
energy surface sampled at the relevant, finite-temperature conditions;
and; (3) the polarization of individual configurations that determines
the observed polarization and the phase transitions. To this aim, we
make use of an integrated machine-learning framework, based on a
combination of an interatomic potential and a microscopic polariza-
tion model, which we use to run Molecular Dynamics simulations of
ferroelectrics with the same accuracy of the underlying DFT method,
on time and length scales that are not accessible to direct ab-initio
modeling. This allows us to uncover the microscopic nature of the fer-
roelectric transition in barium titanate (BaTiO3) and to identify the
presence of an order-disorder transition as the main driver of ferroelec-
tricity. The framework also allows us to reconstruct the temperature-
dependent BaTiO3 phase diagram, with first-of-its-kind accuracy.

O 43.5 Wed 11:30 S054
Dielectric properties of BaTiO3 from an integrated machine-
learning model — ∙Max Veit1, Lorenzo Gigli1, Michele
Kotiuga2, Giovanni Pizzi2, Nicola Marzari2, and Michele
Ceirotti1 — 1Laboratory for Computational Science and Modeling
(COSMO), Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH
— 2Laboratory for Theory and Simulation of Materials (THEOS),
Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH
Modeling the finite-temperature behavior of ferroelectric materials
from first principles has always been challenging due to the large su-
percells and long simulation times required for adequate sampling.
Here we demonstrate the use of an integrated machine learning (ML)
model of the potential energy and polarization surfaces of barium ti-
tanate (BaTiO3) to overcome these difficulties and run long MD simu-
lations with DFT accuracy. We use these simulations to compute the
frequency-dependent dielectric response function, finding a spectrum
qualitatively similar that obtained with previous effective-Hamiltonian
simulations as well as to experimentally measured profiles, with some
remaining discrepancies that we trace back to the underlying DFT
model. Finally, we discuss possible extensions of the model to ex-
plicitly include long-range interactions, previously included only in an
implicit, emergent manner. We expect this integrated, generally ap-
plicable modeling technique to become a valuable tool for elucidating
the ferroelectric behavior of a wide variety of materials.

O 43.6 Wed 11:45 S054
The first-principles phase diagram of monolayer nanocon-
fined water — ∙Venkat Kapil1, Christoph Schran1, Andrea
Zen2, Ji Chen3, Chris Pickard1, and Angelos Michaelides1 —
1University of Cambridge, UK — 2Universitá di Napoli Federico II,
Italy — 3Peking University, Beijing, China
Water in nanoscale cavities is ubiquitous and of central importance to
everyday phenomena in geology and biology, and at the heart of cur-
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rent and future technologies in nano-science. A molecular-level picture
of the structure and dynamics of nano-confined water is a prerequisite
to understanding and controlling the behavior of water under con-
finement. Here we explore a monolayer of water confined within a
graphene-like channel using a framework that combines developments
in high-level electronic structure theory, machine learning, and statis-
tical sampling. This approach enables a treatment of nano-confined
water at unprecedented accuracy. We find that monolayer water ex-
hibits surprisingly rich and diverse phase behavior that is highly sen-
sitive to temperature and the van der Waals pressure acting within
the nano-channel. Monolayer water exhibits numerous molecular ice
phases with melting temperatures that vary by over 400 degrees in a
non-monotonic manner with pressure. In addition, we predict two un-
expected phases: a *hexatic-like* phase, which is an intermediate be-
tween a solid and a liquid, and a superionic phase with a high electrical
conductivity exceeding that of battery materials. Our work suggests
that nano-confinement could be a promising route towards superionic
behaviour at easily accessible conditions.

O 43.7 Wed 12:00 S054
Exploring amorphous graphene with empirical and machine-
learned potentials — ∙Zakariya El-Machachi1, Mark Wilson2,
and Volker L. Deringer1 — 1Department of Chemistry, Inorganic
Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, UK —
2Department of Chemistry, Physical and Theoretical Chemistry Lab-
oratory, University of Oxford, Oxford OX1 3QZ, UK
The structure of amorphous graphene (aG) lacks long range order
whilst having short and medium range order yielding a rich and com-
plex configurational space, which is yet to be fully understood. Here
we report on an atomistic modelling study of aG using a machine
learning (ML) based force field. ML force fields are typically “trained”
on data from highly accurate but computationally costly density func-
tional theory (DFT) computations. Atomistic models created by such
ML methods can achieve near DFT accuracy at a fraction of the com-
putational cost. One key assumption is that the global energy can be
separated into sums of local energies. The physical interpretation of
ML local energies is an interesting research question. We find that
local and nearest neighbour (NN) ML energies can inform the genera-
tion of aG models from crystalline graphene via a Monte–Carlo bond
switching algorithm. Bond switches are introduced as Stone–Wales
defects, with the local energies of the defect pair and its NNs used in
the acceptance criterion. Established empirical force fields are used
in the same way and the resulting structures are studied. Our results
provide insight into the modelling of amorphous graphene and into the
nature of ML potential-energy models.

O 43.8 Wed 12:15 S054
Machine learning for estimation of spin models in undoped
cuprates — ∙Denys Y. Kononenko1, Ulrich K. Rößler1,
Jeroen van den Brink1,2, and Oleg Janson1 — 1Institute for
Theoretical Solid State Physics, IFW Dresden, Dresden, Germany —
2Institute for Theoretical Physics, TU Dresden, Dresden, Germany
Undoped cuprates tailor a fascinating variety of low-dimensional and
frustrated spin models, which can be indirectly characterized by the
transfer integrals. The estimation of transfer integrals is related to a
relatively complicated computational procedure which includes besides
DFT calculation also a Wannierization. We propose a data-driven ap-

proach to replace this computationally demanding procedure.
We employ the Gaussian Process Regression model, trained on the

results of high-throughput DFT calculations to estimate transfer inte-
grals in undoped cuprates. The model learns from data the dependency
between the local crystal environment of copper atoms pair and the
corresponding value of transfer integral. The site position function
of the local crystal environment is represented as a finite-dimensional
vector composed of decomposition coefficients in the truncated basis
of Zernike 3D functions [1]. The vector descriptor incorporates the
spatial configuration and chemical composition of the local crystal en-
vironment. The proposed approach can be utilized for a rapid assess-
ment of the spin models of new cuprates using structural information
as the only input.

[1] M. Novotni and R. Klein, Computer Aided Design 36, 1047 (2004)

O 43.9 Wed 12:30 S054
Machine-learning Based Screening of Lead-free Perovskites
for Photovoltaic Applications — ∙Elisabetta Landini1,3, Har-
ald Oberhofer2, and Karsten Reuter1 — 1Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Ger-
many — 2Chair for Theoretical Physics VII, Physikalisches Institut
Universität Bayreuth, 95440, Bayreuth, Germany — 3Chair for The-
oretical Chemistry, Technische Universität München, Lichtenbergstr.
4, D-85747 Garching, Germany
Lead-free halide double perovskites are promising stable and non-toxic
alternatives to methylammonium lead iodide in the field of photo-
voltaics. In this context, the most commonly used double perovskite
is Cs2AgBiBr6, due to its favorable charge transport properties [1].
However, the maximum power conversion efficiency obtained for this
material does not exceed 3%, as a consequence of its wide indirect gap
and its intrinsic and extrinsic defects [2]. On the other hand, the ma-
terials space that arises from the substitution of different elements in
the 4 lattice sites of this structure is large and still mostly unexplored.

In this work a neural network is used to predict the band gap of
double perovskites from an initial space of 7056 structures and select
candidates suitable for visible light absorption. Successive hybrid DFT
calculations are used to evaluate the thermodynamic stability and the
power conversion efficiency of the selected compounds, and propose
novel potential solar absorbers.

[1] E.T. McClure et al., Chemistry of Materials 28, 1348 (2016).
[2] X. Yang et al., Energy & Fuels 34,10513 (2020).

O 43.10 Wed 12:45 S054
Equivariant graph neural network for linear scaling electron
density estimation and applications in battery materials —
∙Arghya Bhowmik and Peter Jorgensen — 301 Anker Engelunds
vej, Kgs. Lyngby, DK-2800
We present a machine learning framework for the prediction of 𝜌(r)
based on equivariant graph message passing neural networks. The
electron density is predicted at special query point vertices that are
part of the message passing graph, but only receive messages. The
model is tested across multiple data sets of molecules (QM9), liq-
uid ethylene carbonate electrolyte (EC) and LixNiyMnzCo(1-y-z)O2
lithium ion battery cathodes (NMC). The model is used to explore
large materials phase space for safer battery materials and uncovering
new understanding how redox mediated diffusion occurs and battery
materials.
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