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O 67.1 Thu 10:30 S054
Quantile Random Forest Model for Extrapolation to the
Complete Basis Set Limit in Density Functional Theory
Calculations — ∙Daniel Speckhard1, Christian Carbogno2,
Sven Lubeck2, Luca Ghiringhelli2, Matthias Scheffler2,1, and
Claudia Draxl1,2 — 1Humboldt-Universität zu Berlin, Physics De-
partment and IRIS Adlershof, Berlin, Germany — 2The NOMAD Lab-
oratory at the FHI-MPG and HU, Berlin, Germany
The precision of density-functional theory (DFT) calculations depends
on a variety of computational parameters, the most critical being the
basis-set size. With an infinitely large basis set, i.e., in the limit of
a complete basis set (CBS), the result of the calculation is as precise
as possible for the chosen exchange-correlation functional. Our aim
in this work is to find a model that can extrapolate the result of an
imprecise DFT calculation to the CBS limit. As a starting point, we
use a dataset of 63 binary solids investigated with various basis-set
sizes [1] with two all-electron DFT codes, exciting and FHI-aims,
which use very different types of basis sets. A quantile random forest
model is used to estimate the deviation of the total energy with respect
to fully converged calculations as a function of the basis set size. The
non-linear random forest model outperforms a previous approach that
used a linear model. The quantile random forest model presented also
provides prediction intervals which give the user an idea of the model’s
uncertainty.
[1] C. Carbogno et al., npj Comput. Mater. 8, 69 (2022).

O 67.2 Thu 10:45 S054
Symmetry and completeness in machine-learning models for
atomistic simulations — ∙Sergey Pozdnyakov and Michele Ce-
riotti — EPFL, Switzerland
During the last decade, machine learning methods have drastically
changed atomistic simulations. On the one hand, they scale linearly
with the size of the system and thus, are significantly faster than the
quantum mechanical calculations. On the other, they provide a func-
tional form that is much more flexible than so-called classical force
fields such as the Lennard Jones potential or embedded atom models.
From one point of view, incorporating rotational symmetry is impor-
tant for ML since it can make models more data-efficient and robust,
but can also lead to incompleteness, limiting the ultimate accuracy of
the model. I will discuss some examples of this and compare different
types of models to show how one can find an optimal balance of the
two effects.
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Fast, robust, interpretable machine-learning potentials —
Stephen R. Xie1,2, Richard G. Hennig1, and ∙Matthias Rupp3

— 1University of Florida, Gainsville, USA — 2KBR, NASA Ames
Research Center, Mountain View, USA — 3University of Konstanz,
Germany
Machine-learning potentials (MLPs) are increasingly successful in all-
atom dynamics simulations where they act as surrogate models for
ab-initio electronic structure methods. MLPs often result in two to
three orders of magnitude improvements in the number of simulated
atoms or duration of simulated time, enabling new insights and ap-
plications. Current limitations include data inefficiency, instabilities
("holes" in high-dimensional MLPs [2]), and lack of interpretability.

To address this challenge, we combine effective two- and three-body
potentials in a cubic B-spline basis with second order-regularized lin-
ear regression. The resulting "ultra-fast potentials" are data-efficient,
physically interpretable, sufficiently accurate for applications, can be
parametrized automatically, and are as fast as the fastest traditional
empirical potentials. [1] We demonstrate these qualities in retrospec-
tive benchmarks and present the prediction of thermal conductivities
via the Green-Kubo formalism as a first application.

[1] Stephen R. Xie, Matthias Rupp, Richard G. Hennig, Ultra-fast
interpretable machine-learning potentials. arXiv:2110.00624, 2021 [2]
Jeffrey Li, Chen Qu, Joel M. Bowman: Diffusion Monte Carlo with
fictitious masses finds holes in potential energy surfaces, Mol. Phys.
119(17–18): e1976426, 2021.

O 67.4 Thu 11:15 S054

Improving the transferability of high-dimensional neural net-
work potentials by low-order terms — ∙Alea Miako Tokita
and Jörg Behler — Georg-August-Universität Göttingen, Institut
für Physikalische Chemie, Theoretische Chemie, Tammannstraße 6,
37077 Göttingen, Germany
High-dimensional neural network potentials (HDNNPs) are able to
provide accurate potential energy surfaces suitable for atomistic simu-
lations of large systems. The key to this accuracy is the high flexibil-
ity of the atomic neural networks allowing to reproduce energies and
forces from reference electronic structure calculations with very small
errors. At the same time, this flexibility is limiting the transferability
of HDNNPs to atomic configurations that are very different from the
reference geometries. Here, we investigate possible improvements in
transferability of HDNNPs by the explicit inclusion of low-order terms
in the functional form of the potential. The performance is demon-
strated for a series of molecular model systems.

O 67.5 Thu 11:30 S054
Predicting condensed-phase electron densities using machine
learning — ∙Alan Lewis1, Andrea Grisafi2, Michele Ceriotti2,
and Mariana Rossi1 — 1MPI for Structure and Dynamics of Mate-
rials, Hamburg, Germany — 2École Polytéchnique Fédèrale de Lau-
sanne, Lausanne, Switzerland
The electron density is a fundamental quantity for understanding phys-
ical phenomena in materials, and is central to electronic structure the-
ories such as density-functional theory. We present the SALTED ma-
chine learning method and demonstrate its ability to learn and predict
the electronic densities of a range of materials from simple liquids
and metals to hybrid organic-inorganic perovskites. This extends the
framework presented in ACS Cent. Sci. 5, 57, 2019 to work with pe-
riodic boundary conditions and uses a resolution of the identity on a
numeric atom-centered orbital basis to expand the all-electron periodic
density. A Gaussian process regression model that makes use of local
symmetry-adapted representations of the atomic structure is employed,
making our method both data-efficient and highly transferable.[1] We
also compare various methods of dealing with the non-orthogonality of
the basis, accounting for correlations between pairs of off-centered den-
sity components, finding that the best compromise between accuracy
and computational efficiency comes from approximating the density
expansion coefficients by directly minimizing the loss function. The
total energies derived from the densities obtained in this way present
errors with respect to DFT of just 0.1 meV/atom.

[1] Lewis, Grisafi, Ceriotti, Rossi, JCTC 17, 11, 7203 (2021)

O 67.6 Thu 11:45 S054
Equivariant N-center representations for machine learning
molecular Hamiltonians — ∙Jigyasa Nigam, Michael Willatt,
and Michele Ceriotti — Laboratory of Computational Science and
Modeling, Institute of Materials, Ecole Polytechnique Federale de Lau-
sanne, 1015 Lausanne, Switzerland
Most of the widely used machine learning schemes that have been suc-
cessful in predicting chemical and material properties rely on concise,
symmetry-adapted descriptions of the underlying atomic structure. A
class of these structural descriptions is built on hierarchical correla-
tions of atom-centered densities(ACDC)[1]. These are subsequently
used to model corresponding atomic properties or atomic contributions
to a global observable. However, many quantum mechanical quanti-
ties, such as the effective single-particle Hamiltonian written on an
atomic-orbital basis, are associated with multiple atom-centers. This
effectively renders ACDCs inadequate to describe the additional de-
grees of freedom of such multicenter properties. We recently proposed
an N-centered representation[2] that extends the ACDC framework
to the case of targets that are simultaneously indexed by N atoms.
I will demonstrate how devising a family of N-center representations
opens avenues for new classes of machine learning models that are fully
equivariant and describe their role in assisting electronic structure cal-
culations.

[1] J. Nigam, S. Pozdnyakov, M. Ceriotti, JCP 153,121101, 2020
[2] J. Nigam, M. Willatt, M. Ceriotti, JCP 156, 014115, 2022
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Similarity-of-materials analysis for reusability and interoper-
ability of data in materials databases — ∙Šimon Gabaj, Martin
Kuban, Santiago Rigamonti, and Claudia Draxl — Humboldt-
Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Ger-
many
Large computational materials databases, such as NOMAD [1-2], make
it possible to reuse already generated materials data. All these data
typically come from different sources and have been created for a differ-
ent purpose, be it geometry optimization, electronic structure, or alike.
To support interoperability and thus reusability of such data, we devise
a data-analysis workflow making use of similarity fingerprints. First,
we encode the electronic density of states (DOS) in a vectorial repre-
sentation [3] to obtain a descriptor. Then, we employ the Tanimoto
coefficient to compute the similarity between all pairs of calculations.
We demonstrate our workflow with selected materials, chosen from the
NOMAD database. In the ideal case, all calculations of the same ma-
terial in the same geometry should be identical. This is, however, not
observed. Using our approach, we can uncover correlations between
the DOS similarity and methodology as well as computational param-
eters. This way, we can also identify parameters that are relevant for
the convergence of results.

[1] Draxl, C., Scheffler, M., MRS Bulletin, 43, 676, (2018)
[2] Draxl, C., Scheffler, M., J. Phys. Mater., 2, 036001, (2018)
[3] Kuban, M., et al., to be published

O 67.8 Thu 12:15 S054
Supervised and unsupervised deep Learning of topological
phase transitions from entanglement aspect for one- and two-
dimensional chiral p-wave superconductors — ∙Ming-Chiang
Chung — Max-Planck-Institut für Physik komplexer Systeme, Dres-
den, Germany — National Chung-Hsing University, Taichung, Taiwan
The one-dimensional or two-dimensional chiral p-wave superconductor
proposed by Kitaev has long become a classic example for understand-

ing topological phase transitions through various methods, such as
examining the Berry phase, edge states of open chains, and, in partic-
ular, aspects from quantum entanglement of ground states. In order
to understand the amount of information carried in the entanglement-
related quantities, here we study topological phase transitions of the
model with emphasis of using the deep learning approach. Using both
supervised or unsupervised ways, we feed different quantities, including
Majorana correlation matrices (MCMs), entanglement spectra (ES) or
entanglement eigenvectors (EE) originating from Block correlation ma-
trices, into the deep neural networks for training, and investigate which
one could be the most useful input format in this approach. We find
that ES is information that is too compressed compared to MCM or
EE. MCM and EE can provide us abundant information to recognize
not only the topological phase transitions in the model but also phases
of matter with different U(1) gauges, which is not reachable by using
ES only. We also build a procedure for using unsupervised learning to
find the phase transition points. We have used this method for other
models.

O 67.9 Thu 12:30 S054
Machine Learning the Square-Lattice Ising Model — ∙Burak
Çivitcioğlu1, Andreas Honecker1, and Rudolf A. Römer2 —
1Laboratoire de Physique Theorique et Modelisation, CNRS UMR
8089, CY Cergy Paris Universit *e, Cergy-Pontoise, France —
2Department of Physics, University of Warwick, Coventry, CV4 7AL,
United Kingdom
Recently, machine-learning methods have been shown to be success-
ful in identifying and classifying different phases of the square-lattice
Ising model. We study the performance and limits of classification and
regression models. In particular, we investigate how accurately the
correlation length, energy and magnetisation can be recovered from
a given configuration. We find that a supervised learning study of a
regression model yields good predictions for magnetisation and energy,
and acceptable predictions for the correlation length.
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