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O 83.1 Fri 10:30 S054
Alchemical machine learning for high entropy alloys —
∙Nataliya Lopanitsyna, Guillaume Fraux, and Michele Ceri-
otti — École Polytechnique Fédérale de Lausanne, Switzerland
High entropy alloys (HEAs) are a class of metallic materials composed
of five or more principal elements. Interest in HEAs has grown over
the last decades due to their exceptional structural and mechanical
properties. HEAs are particularly challenging for atomistic model-
ing. Machine-learning (ML) models have emerged as a promising al-
ternative to inaccurate empirical forcefields and very demanding first-
principles simulations, with the ability to deliver the accuracy of first
principle methods with lower computational resources. However, the
complexity of ML models grows exponentially with the number of dif-
ferent elements due to the unfavourable scaling of their associated fea-
ture space sizes, limiting the chemical diversity of the systems tackled
thus far. To address the problems arising from the high feature space
dimensionality, first, we propose a chemical embedding compression
scheme to reduce the dimensionality of the feature space required for
multi-component systems, based on the framework of Willatt et al [
Phys. Chem. Chem. Phys., 2018 ], and implemented in PyTorch. Sec-
ond, we generate a dataset of several thousands configurations, assem-
bled from 25 d-block elements, which aims to represent cross-elemental
interactions, evaluating their energies and forces at the DFT level. We
demonstrate the effectiveness of the alchemical ML model in learning
the energetics of this extremely diverse dataset, and provide showcase
calculations of the properties of some realistic HEA compositions.

O 83.2 Fri 10:45 S054
Stacking the odds: Distribution-biased generative deep learn-
ing for molecular design — ∙Joe Gilkes1,2, Julia Westermayr1,
Rhyan Barrett3, and Reinhard J. Maurer1 — 1Department of
Chemistry, University of Warwick, UK — 2HetSys CDT, University of
Warwick, UK — 3Warwick Mathematics Institute, UK
Organic electronics applications pose a number of often competing re-
quirements on molecular design that are hard to satisfy by conventional
synthesis. Devices such as organic light-emitting diodes (OLEDs) must
exhibit closely aligned optoelectronic properties, yet their component
molecules must be easily synthesisable and stable. The odds of find-
ing suitable molecules when drawing random samples from chemical
space are still too low for targeted design of candidate systems for
OLED devices. We develop an automated molecular design approach
based on iterative biasing of a generative deep learning model. In
successive iterations, the output of this model is filtered with a deep
learning surrogate model of electronic structure and then used to re-
train the generative model with a bias. This enables us to create
models that are progressively biased towards, e.g., higher ionisation
potentials, or smaller fundamental gaps. We also demonstrate how we
can bias towards multiple properties simultaneously by filtering our
results with the SCScore model for synthetic complexity. This creates
more synthetically viable molecules while still meeting optoelectronic
requirements. Our approach efficiently creates novel molecules with
tuned optoelectronic properties. Clustering analysis reveals trends in
bonding patterns which can be utilised in molecular design.

O 83.3 Fri 11:00 S054
Machine learning TCP phases with domain knowledge of the
interatomic bond — ∙Mariano Forti, Alesya Burakovskaya,
Ralf Drautz, and Thomas Hammerschmidt — ICAMS, Ruhr-
Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
The understanding of the precipitation of topological close packed
(TCP) phases in single-crystal superalloys is of central importance for
the design of these materials for high-temperature applications. How-
ever, the structural complexity of these intermetallic compounds and
the chemical complexity of the superalloys with typically N=5-10 ele-
ments hampers the exhaustive sampling of chemical space by density-
functional theory (DFT) calculations. For example, the computation
of the convex hull of the R phase with 11 inequivalent lattice sites
would require N11 DFT calculations in an N-component system. We
overcome this computational limitation by combining machine learn-
ing (ML) techniques with descriptors of the local atomic environment
of the TCP phases. We present descriptors that are derived from

bond order potential (BOP) theory which retain domain knowledge
of the interatomic interaction from tight-binding Hamiltonians. We
demonstrate that these descriptors enable us to predict the structural
stability of TCP phases with simple regression algorithms. We apply
this methodology to several systems with experimental evidence of R
phase formation.

O 83.4 Fri 11:15 S054
Ab initio random structure search of organic molecules at
substrates — ∙Dmitrii Maksimov1,2 and Mariana Rossi1,2 —
1Fritz Haber Institute of the Max Planck Society, Berlin, Germany
— 2Max Planck Institute for the Structure and Dynamics of Matter,
Hamburg, Germany
Finding stable structures of molecular adsorbates (in isolation or form-
ing layers) from calculations is challenging, exacerbated when the ad-
sorbates are flexible. To make matters more complicated, in these sit-
uations, it is often difficult to find good and cheap potentials of such
complex interfaces that allow a thorough and reliable global search of
the structural space. To make this problem tractable with ab initio
potentials, we present a random global geometry optimization pack-
age that can explicitly take into account the internal degrees of free-
dom of molecules, their position and orientation with respect to fixed
surroundings, as well as periodic boundary conditions [1]. Electronic
structure calculations and local geometry optimizations are performed
through a connection to the ASE software [2], making it possible to in-
terface this algorithm with various codes. To increase the efficiency of
geometry optimizations, we introduce a framework to construct initial
approximate Hessians for BFGS algorithms that are specially tailored
to accelerate the relaxation of van der Waals bonded structures and
handle large structural changes. We showcase the algorithm for the
adsorption of di-L-alanine at Cu(110). [1] https://github.com/sabia-
group/gensec [2] Larsen et. al., J. Phys.: Condens. Matter 29, 273002
(2017).

O 83.5 Fri 11:30 S054
Active learning and element-embedding approach in neural
networks for infinite-layer versus perovskite oxides — Armin
Sahinovic and ∙Benjamin Geisler — Fakultät für Physik, Univer-
sität Duisburg-Essen
The observation of superconductivity in NdNiO2 films on SrTiO3(001)
by Li et al. [1] has sparked considerable interest in the materials class
of infinite-layer oxides. Here we combine first-principles simulations
and active learning of neural networks to explore formation energies
of oxygen vacancy layers, lattice parameters, and their statistical cor-
relations in infinite-layer versus perovskite oxides across the periodic
table, and place the superconducting nickelate and cuprate families in
a comprehensive context. Neural networks accurately predict these ob-
servables, which act as a fingerprint of the complex reduction reaction,
using only a fraction of the data for training. Unbiased by exter-
nal knowledge, element embedding autonomously identifies chemical
similarities between the individual elements in line with human knowl-
edge. Active learning renders the training highly efficient, based on the
physical concepts of entropy and information, and provides systematic
accuracy control [2]. We recently applied this concept also to nitrides
and fluorides [3]. This exemplifies how AI may assist on the quantum
scale in discovering novel materials with optimized properties.

[1] D. Li et al., Nature 572, 624 (2019)
[2] A. Sahinovic and B. Geisler, PR Research 3, L042022 (2021)
[3] A. Sahinovic and B. Geisler, J. Phys.: Condens. Matter 34,

214003 (2022)

O 83.6 Fri 11:45 S054
Indirect learning interatomic potential models for accelerated
materials simulations — ∙Joe D. Morrow and Volker L. De-
ringer — Department of Chemistry, Inorganic Chemistry Laboratory,
University of Oxford, Oxford OX1 3QR, United Kingdom
Machine learning (ML) based interatomic potentials are emerging tools
for materials simulations but require a trade-off between accuracy and
speed. We show how one ML potential can be used to train another: we
use an existing, accurate, but more computationally expensive model
to generate reference data (labels and locations) for a series of much
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faster “indirectly-learned” potentials. Extensive reference datasets can
be easily generated without the need for quantum-mechanical refer-
ence computations at the indirect learning stage, and we find that the
additional data significantly improve the predictions of fast potentials
with less flexible functional forms.

We apply the technique to disordered silicon, including a simulation
of vitrification and polycrystalline grain formation under pressure with
a system size of a million atoms. When comparing indirectly learned
potentials to models learned directly from a DFT-labelled database,
the latter make unphysical predictions for large systems (105 atoms)
that are not apparent in smaller simulations (≤ 104 atoms). This em-
phasises the importance of carefully validating ML potentials chemi-
cally, not only via numerical error measures. Our work provides con-
ceptual insight into the machine learning of interatomic potential mod-
els, and it suggests a route toward accelerated simulations of nanos-
tructured materials.

O 83.7 Fri 12:00 S054
Predicting hot electrons free energies from ground-state data
— ∙Chiheb Ben Mahmoud, Federico Grasselli, and Michele
Ceriotti — EPFL, Lausanne, Switzerland
Machine-learning potentials, while extremely successful in describing
the stability of condensed phases, are usually trained on ground-state
electronic-structure calculations depending exclusively on the atomic
positions and ignoring the electronic temperature. Hence, they are
limited in their ability to describe hot electrons. We introduce a rigor-
ous framework to calculate the finite-temperature electron free energy
based exclusively on ground-state total energy and electronic density
of states, while allowing to sample on-the-fly the electronic free energy
at any temperature [1]. Our physically-motivated approach facilitates
modeling material properties in extreme conditions with a fraction of
the usual cost. We demonstrate it by computing the equation of state
and heat capacity of hydrogen in planetary conditions. This approach
demonstrates the impact of a universal model describing structural
and electronic properties inexpensively and its ability to enable more
accurate and predictive materials modeling and design.

[1]: C Ben Mahmoud, F Grasselli, M Ceriotti*- arXiv preprint
arXiv:2205.05591, 2022

O 83.8 Fri 12:15 S054
Machine Learning the RPA density-density response function
— ∙Mario Zauchner, Johannes Lischner, and Andrew Hors-
field — Imperial College London, London, United Kingdom
Clusters and nanoparticles are used in a variety of scientific and in-
dustrial applications, including optoelectronics, photocatalysis, single
electron transistors and medical imaging, among others. Electronic
excitations often play a key role in these applications, but theoretical
techniques for calculating excited-state properties of materials, such
as the first-principles GW/Bethe-Salpeter method, are typically lim-
ited to very small systems. A key bottleneck of such excited-state
calculations of clusters and nanoparticles is the determination of the
static density-density response function, which is often calculated us-
ing a sum-over-states technique. In this talk, we present a technique
to decompose the density-density response function into atomic contri-
butions. This can be achieved by exploiting the locality of the density-
density response function in non-metallic systems. These atomic con-
tributions can then be used to train a machine-learning model us-

ing a set of structural features with the same rotational symmetry as
the atomic response functions, thus allowing direct prediction of the
density-density response function using only structural information.

O 83.9 Fri 12:30 S054
MD-based Raman Spectra using Machine Learning —
∙Manuel Grumet1, Karin S. Thalmann1, Tomáš Bučko2,3, and
David A. Egger1 — 1Department of Physics, Technical University of
Munich, Garching, Germany — 2Comenius University in Bratislava,
Slovakia — 3Slovak Academy of Sciences, Slovakia
Theoretical calculations of Raman spectra based on molecular dynam-
ics (MD) trajectories allow to directly incorporate both anharmonic
and temperature-dependent effects and thus yield more realistic spec-
tra compared to a phonon-based approach [1]. The spectra can be
calculated from the Fourier-transformed velocity correlation function
of the polarizability tensor 𝛼. However, this requires evaluating 𝛼 for
a large number of MD configurations along each trajectory, which has
high computational cost if done by ab-initio methods.

We therefore use kernel-based machine learning (ML) methods with
density-based descriptors [2, 3] to predict 𝛼 based on atomic positions.
Ab-initio calculations are then only needed for obtaining a training
data set, reducing the computational cost significantly. We use a num-
ber of test systems, including both solids and small molecules, to test
and optimize several different variants of this approach and compare
the achieved prediction performances. We also test transferability of
the trained models to trajectories at different temperatures.
[1] M. Thomas et al., Phys. Chem. Chem. Phys. 15, 6608 (2013)
[2] A. P. Bartók et al., Phys. Rev. B 87, 184115 (2013)
[3] A. Grisafi et al., Phys. Rev. Lett. 120, 036002 (2018)

O 83.10 Fri 12:45 S054
Thermal Transport via Green-Kubo Method and
Message-Passing Neural-Network Potentials — Marcel F.
Langer1,2, Florian Knoop2,3, Christian Carbogno2, Matthias
Scheffler2, and ∙Matthias Rupp2,4 — 1TU Berlin, Germany —
2The NOMAD Laboratory, FHI-MPG & HU Berlin, Germany —
3Theoretical Physics Division, Linköping U, Sweden — 4Konstanz U,
Germany
Accurate, precise, and efficient computational access to thermal con-
ductivities of materials is relevant for scientific understanding and in-
dustrial applications. The Green-Kubo method with first-principles
calculations enables the determination of thermal conductivities, even
for strongly anharmonic materials [1]. However, the high computa-
tional cost of long dynamics simulations of large supercells required for
convergence limits applicability for large-scale, high-throughput mate-
rials discovery. Machine-learning potentials can reduce this cost [2].

Message passing neural networks (MPNNs) are a promising, but for
this task yet untested, class of models due to their relational inductive
bias, implicit long-range nature, and ability to incorporate directional
information. We adapt the heat flux definition for MPNNs, investigate
the impact of equivariance, present a systematic account of their con-
vergence behavior and performance, and compare them to a simpler
baseline model.

[1]: C. Carbogno, R. Ramprasad, and M. Scheffler, Phys. Rev. Lett.
118 175901 (2017) [2]: P. Korotaev et al., Phys. Rev. B 100 144308
(2019); C. Mangold et al., J. Appl. Phys. 127, 244901 (2020); C. Verdi
et al., NPJ Computer. Mat. 7 156 (2021)
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