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Invited Talk SYES 1.1 Thu 15:00 H1
Machine-learning-driven advances in modelling inorganic ma-
terials — eVoLkER L. DERINGER — University of Oxford, Oxford,
UK

Understanding the links between structures and properties of mate-
rials is an important research challenge. Computer simulations based
on quantum-mechanical methods give access to small-scale models, but
quickly reach their limits when structurally complex systems are to be
studied. Here, I will showcase recent advances in modelling inorganic
functional materials that have been enabled by machine learning (ML)
based interatomic potentials. Specifically, I will demonstrate the power
of ML-driven simulations in exploring the structures of amorphous ele-
mental systems, at ambient and high pressure, and I will discuss future
perspectives for modelling compositionally more complex materials.

Invited Talk SYES 1.2 Thu 15:30 H1
Machine-Learning Discovery of Descriptors for Square-Net
Topological Semimetals — eEuN-An Kim — Cornell University,
Ithaca, NY, USA

The accumulation of massive amounts of materials data motivates
data-based machine learning(ML) approaches. However, an exten-
sive database of materials relying on high-throughput density func-
tional theory (DFT) can be unreliable for emergent properties. Much
needed is an approach that can articulate and build on expert human
researchers’ insights. The tolerance factor introduced in Refs [1-2]
articulates a chemical insight for identifying topological semimetals
among square-net materials and presents an opportunity to develop
such a human-machine synergy. Hence, we developed a supervised-
unsupervised hybrid approach combining non-linear Gaussian Pro-
cess(GP) regression [3] with supervised metric learning to discover
descriptors for topological semimetals. Simultaneously, we curated a
database containing 1279 square-net materials featuring different phys-
ical and chemical attributes and the binary label for the topological
property associated with each material. Application of the GP model
to the database rediscovers the tolerance factor and offers new theo-
retical insight.

[1] Klemenz, et al, J. Am. Chem. Soc. 2020, 142, 13, 6350-6359

[2] Klemenz, et al, Annual Review of Materials Research 2019 49:1,
185-206

[3] D. Milios, et al, Advance in Neural Information Processing Sys-
tems, page 11,2018

Invited Talk SYES 1.3 Thu 16:00 H1
Four Generations of Neural Network Potentials — eJORrRG
BEHLER — Universitat Gottingen, Germany

A lot of progress has been made in recent years in the development
of machine learning potentials for atomistic simulations, with neural
network potentials (NNPs) being an important example. While the
first generation of NNPs has been restricted to small systems, the
second generation extended the applicability of ML potentials to high-
dimensional systems containing thousands of atoms by constructing

Location: H1

the total energy as a sum of environment-dependent atomic ener-
gies. Long-range electrostatic interactions can be included in third-
generation NNPs employing environment-dependent charges, but only
recently limitations of this locality approximation could be overcome
by the introduction of fourth-generation NNPs, which are able to de-
scribe non-local charge transfer using a global charge equilibration
step. In this talk an overview about the historical evolution of high-
dimensional neural network potentials will be given along with an
overview of typical applications in large-scale atomistic simulations.

Invited Talk SYES 1.4 Thu 16:30 HI1
Using machine learning to find density functionals — eKIiERON
BURKE — University of California, Irvine, USA

Over the past decade, advances in machine learning have led to the
creation of new approximate density functionals. I will review this
area, with an emphasis on very recent developments. How do such
functionals compare to those of human design? What are their advan-
tages and their limitations? For example, can they work for strongly
correlated systems? I will consider both the exchange-correlation en-
ergy used in Kohn-Sham DFT and the non-interacting kinetic energy
functional, needed to bypass the KS equations.

e How Well Does Kohn-Sham Regularizer Work for Weakly Corre-
lated Systems? B. Kalita, R. Pederson, J. Chen, L. Li, and K. Burke,
J. Phys. Chem. Lett (2022).

e Machine learning and density functional theory R. Pederson, B.
Kalita, and K. Burke, Nat. Rev. Phys. (2022).

e Kohn-Sham Equations as Regularizer: Building Prior Knowledge
into Machine-Learned Physics L. Li, S. Hoyer, R. Pederson, R. Sun, E.
Cubuk, P. Riley, and K. Burke, Phys. Rev. Lett. 126, 036401 (2021).

e Using Machine Learning to Find New Density Functionals B.
Kalita and K. Burke, Article in Roadmap on Machine Learning in
Electronic Structure (2022).

Invited Talk SYES 1.5 Thu 17:00 H1
Coarse graining for classical and quantum systems — e¢CEcCILIA
CLEMENTI — Freie Universitat Berlin, Germany

The last years have seen an immense increase in high-throughput and
high-resolution technologies for experimental observation as well as
high-performance techniques to simulate molecular systems at a mi-
croscopic level, resulting in vast and ever-increasing amounts of high-
dimensional data. However, experiments provide only a partial view of
the molecular processes and are limited in their temporal and spatial
resolution. On the other hand, simulations are still not able to com-
pletely characterize large and /or complex molecular processes over long
timescales, thus leaving significant gaps in our ability to study these
processes at a physically relevant scale. We present our efforts to
bridge these gaps, by combining statistical physics with state-of-the-
art machine-learning methods to design optimal coarse models for com-
plex macromolecular systems. We derive simplified molecular models
to reproduce the essential information contained both in microscopic
simulation and experimental measurements.



