Thursday

MS 6: Accelerator Mass Spectrometry II

Time: Thursday 14:30–16:30

Location: F128

MS 6.1 Thu 14:30 F128

Status and development of Sr-90 measurements at CologneAMS — •GEREON HACKENBERG¹, MARKUS SCHIFFER¹, SUSAN HERB¹, DOMINIK ELCHINE², STEFAN HEINZE¹, CARLO BADDELIYANAGE¹, ELISA CHOPAN¹, DEVIN HYMERS¹, MARTINA GWOZDZ¹, TOM SITTIG¹, ERIK STRUB², ALFRED DEWALD¹, and DENNIS MÜCHER¹ — ¹Institute for Nuclear Physics, University of Cologne — ²Division of Nuclear Chemistry, University of Cologne

 $^{90}\mathrm{Sr}$ is produced by nuclear fission and is a prominent nuclide in nuclear waste and fallout. Since the decay of $^{90}\mathrm{Sr}$ produces no γ rays, but only low energy β rays, the detection mainly depends on the β decay of the daughter nucleus $^{90}\mathrm{Y}$. This demands a complex chemical treatment, because a probe has to be free of other beta emitters.

Using accelerator mass spectrometry 90 Sr can be measured directly. Here main efforts are a high sputter efficiency and the suppression of the stable isobar 90 Zr.

Measurements have been performed at the 10MV tandem accelerator in Cologne using standards produced at the department of nuclear chemistry. At 9MV a full separation of $^{90}\mathrm{Sr}$ and $^{90}\mathrm{Zr}$ was achieved. This contribution will present charge state distributions behind the stripper, transmission measurements, dE/dx-measurements with our multi anode gas ionization detector and sensitivity limits of the current setup for multiple energies.

This technique will be applied to characterize soil samples from the AVR Jülich.

MS 6.2 Thu 14:45 F128 Slow ions for heavy nuclei: The quest to find interstellar ¹⁸²Hf on Earth — •MICHAEL KERN^{1,2}, MARTIN MARTSCHINI¹, SILKE MERCHEL¹, PETER STEIER¹, ANTON WALLNER³, and ROBIN GOLSER¹ — ¹University of Vienna, Faculty of Physics, Isotope Physics, Austria — ²Vienna Doctoral School in Physics, University of Vienna, Austria — ³Helmholtz-Zentrum Dresden-Rossendorf, Germany

A decade-long search to pin down nucleosynthesis events in our stellar neighborhood could be propelled by measuring the abundance patterns of live $^{182}{\rm Hf}~({\rm T_{1/2}}=8.9\,{\rm Myr})$ together with $^{60}{\rm Fe}$ and $^{244}{\rm Pu}$, which were incorporated in terrestrial archives.

At the Vienna Environmental Research Accelerator (VERA), we developed an ion-laser interaction mass spectrometry (ILIAMS) setup to suppress challenging medium-mass isobars. It uses a radio-frequency quadrupole ion-guide filled with a reactive buffer-gas (He and O₂), where an intense laser beam overlaps with the ion beam. Less-strongly bound unwanted isobar species ($^{182}WF_5^-$) are removed, while wanted species ($^{182}HF_5^-$) remain unaffected.

Ion optical simulations on injection and transport through the ILIAMS setup resulted in a new ion-guide design. It will allow acceptance of large emittance ion beams and will feature a UV-laser to destroy and/or neutralize WF_5^- . Additional challenges for ¹⁸²Hf detection are (a) the chemical preparation of HfF₄ AMS targets from large amounts of deep-sea MnFe crusts and (b) fabrication of reliable low-level (¹⁸²Hf/Hf $\simeq 10^{-13}$) reference materials.

MS 6.3 Thu 15:00 F128

Measurement of Interstellar Radionuclides as Fingerprints of Recent r-Process Events — •SEBASTIAN ZWICKEL^{1,2}, SE-BASTIAN FICHTER¹, DOMINIK KOLL¹, JOHANNES LACHNER¹, GEORG RUGEL¹, KONSTANZE STUEBNER¹, CARLOS VIVO VILCHES¹, STEPHAN WINKLER¹, and ANTON WALLNER¹ — ¹Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany — ²Technical University Dresden, Dresden, Germany

Interstellar radionuclides deposited in our solar system can give information about recent nucleosynthesis events in the solar neighbourhood. The detection of 60 Fe with Accelerator Mass Spectrometry (AMS) in various geological and lunar samples yields evidence for two nearby supernovae (SNe) in the last 10 My. Measuring pure r-process 244 Pu in the same samples can relate SN nucleosynthesis with r-process signatures; either as a concomitant production or deposition. Its first detection in a deep sea manganese crust demonstrates the recent deposition of interstellar r-process nuclides in terrestrial archives, but is suffering from poor time resolution due to the rarity of 244 Pu.

This talk discusses the motivation and chemical sample preparation towards the search for $^{244}{\rm Pu}$ as well as other radionuclides in lunar

soil. The absence of geological activity allows for a longer search into the past than is possible with terrestrial material.

MS 6.4 Thu 15:15 F128

Improved ⁶⁰Fe measurements at CologneAMS — SUSAN HERB, GEREON HACKENBERG, MARKUS SCHIFFER, TIMM PABST, ELISA CHOPAN, ALFRED DEWALD, and •DENNIS MÜCHER — Institut für Kernphysik, Universität zu Köln

Since the first indication of Supernovae (SN) deposited signals in terrestrial reservoirs, the key isotope 60 Fe became an appealing isotope for astrophysical applications. Furthermore, ⁶⁰Fe produced in iron meteorites by galactic cosmic rays via spallation on ⁶²Ni and ⁶⁴Ni gives pivotal insight into the structure and history of our solar system. AMS is by far the most sensitive method to detect ⁶⁰Fe, with currently only a single laboratory offering ⁶⁰Fe AMS measurements, worldwide. This is partly due to the high beam energies required to suppress and separate the highly abundant isobar 60 Ni. In this work we present recent improvements of the 10MV AMS system at the University of Cologne which have significantly improved the efficiency and stability of the ⁶⁰Fe measurements using a gas-filled magnet. The fully digital setup now allows to tune the system and conduct the $^{60}\mathrm{Fe}$ measurements fully automatically, further improving the overall efficiency of the AMS measurements. The currently achieved background level of $^{60}\mathrm{Fe}/\mathrm{Fe}$ of about $5\cdot10^{-15}$ allows for a routine measurement of iron meterotites. Future ideas to further improve the detection limit and efficiency of the setup will be discussed.

MS 6.5 Thu 15:30 F128

Cosmogenic ¹⁰Be Dating of a Ferromanganese Crust Into the Early Miocene — •DOMINIK KOLL^{1,2}, ANTON WALLNER¹, JO-HANNES LACHNER¹, SEBASTIAN FICHTER¹, GEORG RUGEL¹, KON-STANZE STUEBNER¹, CARLOS VIVO-VILCHES¹, STEPHAN WINKLER¹, RENE ZIEGENRUECKER¹, and SEBASTIAN ZWICKEL¹ — ¹Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany — ²The Australian National University, Canberra, Australia

Deep-sea ferromanganese crusts are slow-growing geological archives on seamounts without sediment coverage and are found in all major oceans. Their growth by precipitation with growth-rates of 1-10 mm/Myr records the oceanic inventory of radionuclides over several million years. The dating of ferromanganese crusts is typically achieved by following the decrease of cosmogenic ¹⁰Be concentration in a depth-profile as a result of its radioactive decay.

In preparation for the search for the interstellar radionuclides 60 Fe and 244 Pu, the ferromanganese crust VA13/2-237KD was analyzed by optical and X-ray scans, stable element analysis and accelerator mass spectrometry for cosmogenic 10 Be until the end of the early Miocene. In this contribution, the characterization of the crust is presented with results from the cosmogenic 10 Be dating at the DREAMS facility of HZDR including an unexpected anomaly during the late Miocene.

MS 6.6 Thu 15:45 F128 Lowering the background levels of ¹⁴C AMS measurements at CologneAMS — • Tom Sittig, Martina Gwozdz, Stefan Heinze, Markus Schiffer, Elisa Chopan, Gereon Hackenberg, Timm PABST, and Dennis Mücher — Institute for Nuclear Physics, University of Cologne, Germany

AMS CO₂ gas measurements are useful as they allow for ultra small sample sizes to be analysed. A low background is important to achieve reliable and reproducible $^{14}\mathrm{C}/^{12}\mathrm{C}$ ratios. Because previously these background levels were higher than expected at CologneAMS when performing blank measurements, a source of contamination was investigated. As the result a new preparation routine has been implemented at the 6MV AMS system of CologneAMS.

By including the target holders alongside the CO₂-targets during heating for an extended period of time, followed by cooling both to room temperature under an argon atmosphere, we were able to decrease the background level by 60%. The new blank ratios are consistent with the machine blank level at $3.7 \cdot 10^{-15} \pm 18\%$. The stability of background levels is also improved and consistent with statistical expectations.

This increased stability allows us to investigate the sources of memory effects observed in cases where samples with low $^{14}\mathrm{C}$ contents were

preceded by samples with high $^{14}\mathrm{C}$ content, optimising our setup even further in the future.

MS 6.7 Thu 16:00 F128 Exploring analysis of ⁹⁹Tc at environmental levels — •STEPHANIE ADLER¹, KARIN HAIN¹, FADIME GÜLCE¹, MARTIN MARTSCHINI¹, STEFAN PAVETICH², STEPHEN G. TIMS², L. KEITH FIFIELD², and ROBIN GOLSER¹ — ¹University of Vienna, Faculty of Physics - Isotope Physics, Vienna, Austria — ²Australian National University, Canberra, Australia

Determination of absolute concentrations of the anthropogenic radionuclide ⁹⁹Tc ($t_{1/2}=2.1\times10^5$ yr) in environmental samples by AMS requires suppression of the stable isobaric background of ⁹⁹Ru and a reliable normalization method. At the Vienna Environmental Research Accaelerator (VERA) it was shown that RuF_5^- can be suppressed by a factor of up to 10^5 using a laser, making extraction of ${}^{99}\text{TcF}_5^-$ a viable option for Ion Laser InterAction MS (ILIAMS). However, none of the methods for the extraction of TcF_5^- provided a reproducibility better than 50%. Without ILIAMS, the separation of $^{99}\mathrm{Ru}$ from $^{99}\mathrm{Tc}$ is currently only possible at the AMS facility at the Australian National University (ANU), using a 14 MV tandem accelerator. There, ⁹⁹Ru and ⁹⁹Tc are separated in an 8-anode ionization chamber owing to minute differences in their energy loss characteristics, observable only at high ion energies. Experiments at the meanwhile shut-down Munich AMS-facility using TcO⁻ and normalization to the ⁹³Nb-current extracted from the sputter matrix showed a precision of 30%. Using this approach at the ANU, a 99 Tc dilution series of 10^{10} - 10^7 at/sample was measured in preparation for the measurement of environmental samples, achieving R^2=0.993 and a blank level of ${\sim}2{\times}10^6$ at/sample.

MS 6.8 Thu 16:15 F128 Sample preparation for accelerator mass spectrometry (AMS) – Approach to identify potential ¹⁰Be contamination sources — •SILKE MERCHEL^{1,2}, JOHANNES LACHNER^{1,2}, OS-CAR MARCHHART¹, GEORG RUGEL², and ALEXANDER WIESER¹ — ¹University of Vienna, Faculty of Physics, Isotope Physics, Austria — ²Helmholtz-Zentrum Dresden-Rossendorf, Germany

In the last decades, AMS has largely improved in the direction of lower detection limits, especially for applications of $^{10}\mathrm{Be}/^{9}\mathrm{Be}$ in Earth and environmental sciences. However, potential sources of $^{10}\mathrm{Be}$ contamination while chemical sample preparation are often known but rarely identified in detail and quantified, which would be the first step to reduce these unwanted contributions. Thus, we have aimed at investigating ¹⁰Be in (a) deionised/subboiled water, (b) commercial ²⁷Al carrier solutions, (c) ⁹Be minerals and (d) cation exchange materials differently precleaned before first use. For better quantification, we have e.g., varied ²⁷Al amounts and used ²⁷Al carriers from different companies. Though, it was partially hard to distinguish in-between "single" ¹⁰Be sources and between other sources like laboratory "dust" and cross-contamination (in lab and ion source) at the $<4x10^{-15}$ level. To conclude, our general recommendation is to minimize the amounts of water, ion exchange materials and ²⁷Al carrier. For ultra-low-level $^{10}\mathrm{Be}/^{26}\mathrm{Al}$ dating, subboiled water and customised Al carriers from minerals might be advantageous. The good news, cross-contamination in an AMS chemistry lab in use for >12 years – for samples orders of magnitude different in ${}^{10}\text{Be}/{}^{9}\text{Be}$ – is negligible.