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QI 3: Quantum Machine Learning

Time: Monday 11:00–13:00 Location: B305

Invited Talk QI 3.1 Mon 11:00 B305
Characterising quantum device variability with machine
learning — ∙Natalia Ares — University of Oxford
Machine learning is proving to be essential in the tuning and character-
ization of quantum devices. The search for operation conditions, which
often requires navigating large and complex parameter spaces, can now
be fully automated, with performances superior to those achieved by
human experts. Now these machine learning approaches are not only
enabling scalability by automating qubit control, but also by providing
us with unprecedented insight into quantum device variability.

We can use machine learning algorithms for automatic tuning across
different semiconductor platforms. This demonstrates not only the ro-
bustness of these algorithms against the differences in the characteris-
tics of the material system and device architecture, but that they can
provide a tool for their comparison and analysis. I will show that by
using a physics-aware machine learning algorithm we are able to infer
the disorder potential affecting the operation of quantum dot devices,
revealing a hidden characteristic of such devices, and thus narrowing
the gap between simulation and reality.

QI 3.2 Mon 11:30 B305
The application of quantum neural networks in function ap-
proximation — ∙David Kreplin and Marco Roth — Fraunhofer
IPA, Nobelstraße 12, 70569 Stuttgart, Deutschland
Approximating functions by parameterized quantum circuits is a
promising application for quantum computing, since the repetitive
encoding of the input data can result in an exponentially growing
complexity of the function. In the literature, this approach is often
described as Quantum Neural Networks (QNNs), since it can be simi-
larly utilized as classical artificial neural networks.

In this talk, we show how an efficient and general function approxi-
mation can be realized by a QNN. We discuss the construction, train-
ing, and the application of the QNN with the example of solving a
differential equation based model of a hydrogen electrolyzer and bench-
mark the results against classical neural networks.

A particular focus in this talk will be on the unavoidable noise that
results from the finite sampling of the quantum state. This so-called
shot noise strongly degrades the training process and yields a noisy
outcome of the QNN. We discuss how that shot noise can be strongly
reduced during the training of the QNN by an additional regularization
term. This not only reduces the noise in the final function but also
simplifies the training process on shot based simulators or real devices.
Finally, we present results from the real quantum computing hardware
and we reflect on the obstacles that we currently face in training such
QNNs on the real backends.

QI 3.3 Mon 11:45 B305
Parameterized quantum circuits for reinforcement learning
of classical rare dynamics — Alissa Wilms1,2, ∙Laura Ohff2,3,
Andrea Skolik4,5, David A. Reiss1, Sumeet Khatri1, and Jens
Eisert1,6,7 — 1Dahlem Center for Complex Quantum Systems, Freie
Universität Berlin, Berlin, Germany — 2Porsche Digital GmbH, Lud-
wigsburg, Germany — 3Otto-Friedrich Universität Bamberg, Bam-
berg, Germany — 4Leiden University, Leiden, The Netherlands —
5Volkswagen Data:Lab, Munich, Germany — 6Fraunhofer Heinrich
Hertz Institute, Berlin, Germany — 7Helmholtz-Zentrum Berlin für
Materialien und Energie, Berlin, Germany
In the study of non-equilibrium or industrial systems, rare events are
crucial for understanding the systems’ behavior. Since they are atyp-
ical, one requires specific methods for sampling and generating rare
event statistics in an automated and statistically meaningful way. We
propose two quantum reinforcement learning (QRL) approaches to
study rare dynamics of time-dependent systems and investigate their
benefits over classical approaches based on neural networks. We in-
vestigate how architectural choices influence the successful learning by
QRL agents and demonstrate that a QRL agent is capable of learning
the rare dynamics of a random walker with using just a single qubit.
Furthermore, we are able to numerically demonstrate an improved en-
vironment exploration during learning and a better performance in
coping with environment scaling by the quantum agents in compari-
son to their classical counterparts.

QI 3.4 Mon 12:00 B305
Optimal storage capacity of quantum Hopfield neural net-
works — ∙Lukas Bödeker1,2, Eliana Fiorelli1,2,3, and Markus
Müller1,2 — 1Institute for Theoretical Nanoelectronics (PGI-2),
Forschungszentrum Jülich, 52428 Jülich, Germany — 2Institute for
Quantum Information, RWTH Aachen University, 52056 Aachen, Ger-
many — 3Instituto de Fisica Interdisciplinar y Sistemas Complejos
(IFISC), CSIC UIB Campus, Palma de Mallorca, E-07122, Spain
Quantum neural networks form one pillar of the emergent field of quan-
tum machine learning. Here, quantum generalisations of classical net-
works realizing associative memories - capable of retrieving patterns,
or memories, from corrupted initial states - have been proposed. It is
a challenging open problem to analyze quantum associative memories
with an extensive number of patterns, and to determine the maxi-
mal number of patterns the quantum networks can reliably store, i.e.
their storage capacity. In this work, we propose and explore a general
method for evaluating the maximal storage capacity of quantum neu-
ral network models. As an example, we apply our method to an open-
system quantum associative memory formed of interacting spin-1/2
particles realizing coupled artificial neurons. The system undergoes a
Markovian time evolution resulting from a dissipative retrieval dynam-
ics that competes with a coherent quantum dynamics. We map out
the non-equilibrium phase diagram and study the effect of temperature
and Hamiltonian dynamics on the storage capacity. Our method opens
an avenue for a systematic characterization of the storage capacity of
quantum associative memories.

QI 3.5 Mon 12:15 B305
Quantum kernel methods for regression — ∙Jan Schnabel —
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA,
Center for Cyber Cognitive Intelligence (CCI), Stuttgart, Germany
It was shown in Refs. [1,2] that encoding data into a quantum state and
interpreting the respective expectation value when measuring w.r.t. an
observable as machine learning model, links quantum computing to the
rich framework of classical kernel theory. Hence, these theoretical tools
can now be used to understand quantum models. Here, the inherent
structure of quantum kernel methods is particularly suited for NISQ
applications. As a result, these facts caused constantly growing re-
search activities in this field, where little attention has been hitherto
paid to quantum kernel regression problems.

In this talk, I briefly introduce the core theoretical concepts of dif-
ferent approaches for computing quantum kernels before discussing
associated challenges. The latter includes the role of classical data
pre-processing and selection, data redundancies as well as the design of
quantum feature maps. These aspects are discussed based on project-
specific use cases from hydrogen production research. Beyond that,
I attempt to provide a systematic comparison of different quantum
kernel regression approaches and show results from real backend runs.
This also incorporates demonstrating effects of proper error mitigation
techniques.

[1] M. Schuld and N. Killoran. Phys. Rev. Lett. 122, 040504 (2019)
[2] M. Schuld, arXiv:2101.11020v2 (2021)

QI 3.6 Mon 12:30 B305
Renormalisation through the lens of QCNNs — ∙Nathan
A. McMahon, Petr Zapletal, and Michael J. Hartmann —
Friedrich-Alexander-Universität Erlangen- Nürnberg
The cluster-Ising model is an example of a quantum model with a
symmetry protected topological (SPT) phase. For this model, the
efficiency of performing phase recognition has recently been improved
over measuring string order parameter (SOP) by the use of a particular
quantum convolutional neural network (QCNN), which was motivated
by renormalisation theory.

Unlike most neural networks, the function of the QCNN used here
is relatively straightforward to explain. First, each layer of the QCNN
performs a process analogous to both renormalisation/quantum error
correction. Second, the remainder of the circuit simply determines if
we are in the ground state of a stabiliser Hamiltonian. If the energy is
sufficiently low we consider the input state to be in the target phase.

This QCNN also has a second feature, it is exactly equivalent to a
constant depth quantum circuit + post-processing. Beyond just pro-
viding a cheaper circuit, this also points to the generalisation of phase
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recognising QCNNs beyond the cluster-Ising model. Combining these
with the fidelity view of quantum phases, I will discuss the potential
of QCNNs as a quantum information theory construction of renormal-
isation.

QI 3.7 Mon 12:45 B305
Quantum Gaussian Processes for Bayesian Optimization —
∙Frederic Rapp and Marco Roth — Fraunhofer IPA, Stuttgart
70569, Nobelstrasse 12
An important aspect of machine learning is finding the best possible
hyperparameters for a given model. Bayesian optimization is one of-
ten used algorithm when tackling this task. It requires a surrogate
model where Gaussian processes can be used. Gaussian processes are
a method based on the evaluation of kernel matrices that serve as co-

variance functions. These matrices can be evaluated using a quantum
computer by encoding the data into the quantum Hilbert space. We
study Gaussian processes using quantum kernels based on parameter-
ized quantum circuits, and their application to regression tasks, as well
as their usage as a surrogate model for Bayesian optimization. We show
that the method can solve a regression of a one-dimensional function
under the influence of different quantum computing noise sources. We
discuss the important aspects of the model and provide an example
of the optimization of the method when solving a multi-dimensional
regression task. Finally, we perform a hyperparameter tuning using
Bayesian optimization based on quantum Gaussian process regression.
We show that the quantum version of the algorithm is able to find
suitable hyperparameter settings of a given problem that are compa-
rable to applying the classical counterpart and even better than using
a random search based algorithm.
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