# SKM 2023 – wissenschaftliches Programm

## Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

# DY: Fachverband Dynamik und Statistische Physik

## DY 4: Pattern Formation, Delay and Nonlinear Stochastic Systems

### DY 4.4: Vortrag

### Montag, 27. März 2023, 10:15–10:30, ZEU 250

**The universal CHEOPS, the path to it, and applications** — Andre Förtsch and •Walter Zimmermann — Theoretische Physik, Universität Bayreuth

Solutions to fundamental questions in the field of nonequilibrium phase transitions are presented. What are the 'generic transport equations for oscillatory phase separation' (GTOPS) in systems described by conserved fields? GTOPS cover both classical and oscillatory phase separation. But what is the universal equation for oscillatory phase separation, i.e., the counterpart of the famous universal complex Ginzburg-Landau equation (cGLE) for an unconserved order parameter [1]? It is the 'Cahn-Hilliard model extended to oscillatory phase separation' (CHEOPS) that includes the model in [2] as a special case. By generalizing methods from [3-6] CHEOPS is derived from GTOPS or even from a chemotaxis model for two species. Examples of surprising solutions of GTOPS and CHEOPS (patterns) are presented and some of them are also illustrated by a so-called minimal model (MIMO).

[1] I. Aranson, L. Kramer, Rev. Mod. Phys. 74, 99 (2002)

[2] W. Zimmermann, Physica A 237, 575 (1997)

[3] F. Bergmann et al., Phys. Rev. E 98, 020603(R) (2018)

[4] L. Rapp et al., Eur. Phys. J E 42, 57 (2019)

[5] F. Bergmann, W. Zimmermann, PLoS ONE 14, e0218328 (2019)

[6] F. J. Thomsen, L. Rapp, F. Bergmann, W. Zimmermann, New J. Phys. (FT) 23, 042002 (2021)