MM 29: Data Driven Materials Science: Big Data and Work Flows – Electronic Structure
  Wednesday, March 29, 2023, 11:45–13:00, SCH A 251
  
    
  
  
    
      
        
          
            
              |  | 11:45 | MM 29.1 | Band Gap and Formation Energy Inference of Solids using Message Passing Neural Networks — •Tim Bechtel, Daniel Speckhard, and Claudia Draxl | 
        
          |  |  | 
      
    
      
        
          
            
              |  | 12:00 | MM 29.2 | Predicting electron density using a convolutional neural network — •Jae-Mo Lihm, Wanhee Lee, and Cheol-Hwan Park | 
        
          |  |  | 
      
    
      
        
          
            
              |  | 12:15 | MM 29.3 | Chemical ordering and magnetism in CrCoNi Medium Entropy Alloy — •Sheuly Ghosh, Vadim Sotskov, Alexander Shapeev, Jörg Neugebauer, and Fritz Körmann | 
        
          |  |  | 
      
    
      
        
          
            
              |  | 12:30 | MM 29.4 | Charge-dependent Atomic Cluster Expansion — •Matteo Rinaldi, Anton Bochkarev, Yury Lysogorskiy, Matous Mrovec, and Ralf Drautz | 
        
          |  |  | 
      
    
      
        
          
            
              |  | 12:45 | MM 29.5 | A machine-learned interatomic potential for silica and mixed silica-silicon systems — •Linus C. Erhard, Jochen Rohrer, Karsten Albe, and Volker L. Deringer | 
        
          |  |  |