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HL 6: Focus Session: Frontiers of Electronic-Structure Theory III (joint session O/HL)
Electronic-structure calculations, based on density-functional theory (DFT) and methodology beyond,
are getting increasingly involved as they face the following challenges: First, investigations of modern
materials typically require large unit cells, owing to complex crystal structures, mixed compositions,
internal interfaces, etc. Second, at the same time, they often require advanced methods, including hybrid
functionals of DFT, Green-function techniques from many-body perturbation theory (MBPT), high-level
wavefunction-based methods like coupled-cluster (CC) theory, or quantum Monte-Carlo simulations.
All these methods should ideally be implemented in scientific software that is running efficiently on
modern supercomputers. With both methodology and computer architectures exhibiting increasing
complexity, collaborative development and shared tools, including ready-to-use libraries and codes, are
becoming indispensable. This interdisciplinary symposium covers recent progress in the broad area of
electron-structure methods and highly-sophisticated tools that enable the entire community to explore
most exciting materials from different perspectives to either predict peculiar features or get insight into
measured counterparts.
Organizers: Claudia Draxl (HU Berlin), Dorothea Golze (TU Dresden), Xavier Gonze (U Louvain), and
Andris Gulans (U Latvia)

Time: Monday 10:30–13:00 Location: TRE Ma

HL 6.1 Mon 10:30 TRE Ma
Testing the hell out of DFT codes with virtual oxides —
Emanuele Bosoni1, ∙Stefaan Cottenier2, and Giovanni Pizzi3

— 1ICMAB-CSIC, Spain — 2Ghent University, Belgium — 3EPFL,
Switzerland
If you use DFT to predict a property of a crystal, how confident can
you be that the prediction is computed in a bug-free way? And if your
DFT-code uses pseudopotentials, can you trust that the pseudopoten-
tial does not modify your predictions? Answering such questions has
been the goal of a study a few years ago, in which 71 unary crystals
were examined in exactly the same way by 40 different DFT methods
and codes [DOI 10.1126/science.aad3000]. In a next step, a consor-
tium of 41 scientists (*) has done a similar exercise for a much larger
pool of crystals: all elements of the periodic table up to Z=96, each
in 10 different crystal structures, 6 of them being (virtual) oxides that
sample a range of chemical bond types and 4 being unary crystals that
sample low to high coordination environments. In this presentation,
we will discuss the reasons to choose these crystals, the different qual-
ity criteria by which results can be compared, we will demonstrate how
this exercise leads to more precise and more trustworthy pseudopoten-
tial libraries, and we will show how this data set is shared with the
community in order to foster better-tested codes and pseudopotentials
for all.

(*) Unfortunately the size of this abstract does not allow to mention
them all.

HL 6.2 Mon 10:45 TRE Ma
High-throughput absorption spectra obtained by beyond-
DFT workflows — ∙Fabian Peschel, Alexander Buccheri, and
Claudia Draxl — Institut für Physik and IRIS Adlershof, Humboldt-
Universität zu Berlin, Berlin, Germany
Fully converging ab initio calculations can be a challenging task, in
particular when it comes to excited states, which require multiple
ground-state calculations for different physical quantities. In this work,
we aim at computing highly precise absorption spectra by employing
the Bethe-Salpeter equation of many-body perturbation theory, as im-
plemented in the all-electron full-potential package exciting [1,2]. To
obtain benchmark data for a wide range of material classes, we have de-
veloped workflows where Python tools automatically create input files,
start calculations, and evaluate results. For each material, all relevant
input parameters, such as the number of k-points for the Brillouin-zone
sampling, basis-set basis cutoff and the number of unoccupied states,
are varied until the targeted convergence criteria are reached. With
the help of a workflow manager, the calculations can be executed in
a high-throughput fashion on a high-performance computing cluster.
We demonstrate our approach with core-level spectra of elemental and
binary solids, and provide an in-depth analysis of the obtained data.
This work is carried out in the framework of the NOMAD Center of
Excellence [3] and the CRC FONDA [4].

[1] A. Gulans et al., J. Phys. Condens. Matter 26, 363202 (2014). [2]
C. Vorwerk, B. Aurich, C. Cocchi, and C. Draxl, Electron. Struct. 1,
037001 (2019). [3] https://nomad-coe.eu [4] https://fonda.hu-berlin.de

Topical Talk HL 6.3 Mon 11:00 TRE Ma
Large-scale machine-learning assisted discovery and charac-
terization of materials — ∙Miguel Alexandre Lopes Marques
— Institut für Physik Martin-Luther-Universität Halle-Wittenberg,
Halle (Saale), Germany
In this talk we discuss our recent attempts to discover, characterize,
and understand inorganic compounds using ab initio approaches ac-
celerated by machine learning. We start by motivating why the search
for new materials is nowadays one of the most pressing technological
problems. Then we summarize our recent work in using crystal-graph
attention neural networks for the prediction of materials properties. To
train these networks, we curated a dataset of over 2 million density-
functional calculations with consistent calculation parameters. Com-
bining the data and the newly developed networks we have already
scanned more than two thousand prototypes spanning a space of more
than one billion materials and identified tens of thousands of theo-
retically stable compounds. We then discuss how simple, interpretable
machine learning approaches can be used to understand complex mate-
rial properties, such as the transition temperature of superconductors.
Finally, we speculate which role machine learning will have in the fu-
ture of materials science.

15 min. break

HL 6.4 Mon 11:45 TRE Ma
Predicting the electronic structure at any length scale
with machine learning — ∙Attila Cangi — Helmholtz-Zentrum
Dresden-Rossendorf, Görlitz, Germany
The properties of electrons in matter are of fundamental importance.
They give rise to virtually all molecular and material properties and
determine the physics at play in objects ranging from semiconductor
devices to the interior of giant gas planets. Calculations rely primarily
on density functional theory (DFT), which has become the principal
method for predicting the electronic structure of matter. While DFT
calculations have proven to be very useful, their computational scal-
ing limits them to small systems. We have developed a scalable ma-
chine learning framework for predicting the electronic structure on any
length scale [1,2,3]. It shows up to three orders of magnitude speedup
on systems where DFT is tractable and, more importantly, enables
predictions on scales where DFT calculations are infeasible. Our work
demonstrates how machine learning circumvents a long-standing com-
putational bottleneck and advances science to frontiers intractable with
any current solutions.

[1] J. A. Ellis, L. Fiedler, G. A. Popoola, N. A. Modine, J. A.
Stephens, A. P. Thompson, A. Cangi, S. Rajamanickam, Phys. Rev. B
104, 035120 (2021). [2] L. Fiedler, N. Hoffmann, P. Mohammed, G. A.
Popoola, T. Yovell, V. Oles, J. A. Ellis, S. Rajamanickam, A. Cangi,
Mach. Learn.: Sci. Technol. 3 045008 (2022). [3] L. Fiedler, N. A.
Modine, S. Schmerler, D. J. Vogel, G. A. Popoola, A. P. Thompson,
S. Rajamanickam, A. Cangi, arXiv:2210.11343 (2022).

HL 6.5 Mon 12:00 TRE Ma
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Demonstrating temperature transferability of neural net-
work models replacing modern density functional theory —
∙Lenz Fiedler and Attila Cangi — Helmholtz-Zentrum Dresden-
Rossendorf / CASUS
Due to its balance between accuracy and computational cost, Density
Functional Theory (DFT) is one of the most important computational
methods within materials science and chemistry. However, current re-
search efforts such as the modeling of matter under extreme conditions
demand the application of DFT to larger length scales as well as higher
temperatures. Such investigations are currently prohibited due to the
computational scaling of DFT.

We have recently introduced a machine-learning workflow that re-
places modern DFT calculations [1,2,3]. This workflow uses neural
networks to predict the electronic structure locally. We show that by
employing such an approach, models can be trained to predict the elec-
tronic structure of matter across temperature ranges. This paves the
way for large-scale simulations of thermodynamically sampled observ-
ables relevant to modeling technologically important phenomena such
as radiation damage in fusion reactor walls.

[1] J. A. Ellis et. al, Phys. Rev. B 104, 035120
[2] L. Fiedler et. al, Mach. Learn.: Sci. Technol., 3 045008
[3] L. Fiedler et. al, arXiv:2210.11343

HL 6.6 Mon 12:15 TRE Ma
Pure non-local machine-learned density functional theory for
electron correlation — ∙Johannes T. Margraf — Fritz-Haber-
Institut der MPG, Berlin, Germany
Density-functional theory (DFT) is a rigorous and (in principle) exact
framework for the description of the ground state properties of atoms,
molecules and solids based on their electron density. While com-
putationally efficient density-functional approximations (DFAs) have
become essential tools in computational chemistry, their (semi-)local
treatment of electron correlation has a number of well-known patholo-
gies, e.g. related to electron self-interaction. Here, we present a type of
machine-learning (ML) based DFA (termed Kernel Density Functional
Approximation, KDFA) that is pure, non-local and transferable, and
can be efficiently trained with fully quantitative reference methods.
The functionals retain the mean-field computational cost of common
DFAs and are shown to be applicable to non-covalent, ionic and cova-
lent interactions, as well as across different system sizes.

HL 6.7 Mon 12:30 TRE Ma
Predicting the response of the electron density to electric
field using machine learning — ∙Alan Lewis and Mariana Rossi

— MPI for Structure and Dynamics of Materials, Hamburg, Germany
The response of the electron density of a molecule or material to a ho-
mogeneous electric field defines its dielectric constant, along with its
Raman and sum-frequency spectrum. We present a local and trans-
ferable machine learning approach capable of predicting the density
response of molecules and periodic system on the same footing. This
uses a very similar framework to that of the SALTED method recently
introduced by these authors,[1,2] requiring only a small modification to
the 𝜆−SOAP descriptors used to represent the atomic environments.
This allows us to predict the density response of liquid water to a
field applied in each Cartesian direction from a single machine learn-
ing model. The tensorial dielectric constant can then be derived from
this predicted density response, dramatically reducing the computa-
tional cost of calculating these properties relative to the standard ap-
proach of using density functional perturbation theory. We discuss the
transferability of the model to different phases, and demonstrate the
extrapolative power of this approach.

[1] Lewis, Grisafi, Ceriotti, Rossi, JCTC 17, 11, 7203 (2021)
[2] Grisafi, Lewis, Rossi, Ceriotti, accepted JCTC (2022)

HL 6.8 Mon 12:45 TRE Ma
Analysis of Batching Methods in Graph Neural Network
Models for Materials Science — ∙Daniel Speckhard, Tim
Bechtel, Jonathan Godwin, and Claudia Draxl — Humboldt-
Universität zu Berlin, Physics Department and IRIS Adlershof, Berlin,
Germany
Graph neural network (GNN) based models have shown promising re-
sults for materials science [1]. These models often contain millions
of parameters, and like other big-data based models, require only a
portion of the entire training dataset to be fed as a mini-batch to up-
date model parameters. The effect of batching on the computational
requirements of training and model performance has been thoroughly
explored for neural networks [2] but not yet for GNNs. We explore
two different types of mini-batching methods for graph based models,
static batching and dynamic batching. We use the Jraph library built
on JAX to perform our experiments where we compare the two batch-
ing processes for two data-sets, the QM9 dataset of small molecules and
the AFLOW materials database [3]. We show that dynamic batching
offers significant improvements in terms of computational requirements
for training. We also present results on the effect of the batch size and
batching method on model performance.
[1] T. Xie et al., Physical Review Letters, 120, 14 (2018).
[2] M. Li et al., Proceedings of the 20th ACM SIGKDD (2014).
[3] S. Curtarolo et al., Comp. Mat. Science, 58, 227-235 (2012).
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