MA 17: Thin Films: Magnetic Anisotropy

Time: Tuesday 9:30-11:00

Location: POT 6

Characteristics and origin of a SrRuO₃ exchange spring —

MA 17.1 Tue 9:30 POT 6 Micromagnetic parameters and longitudinal relaxation in ultrathin asymmetrically sandwiched magnetic films — •OLEKSII M. VOLKOV¹, IVAN A. YASTREMSKY², OLEKSANDR V. PYLYPOVSKYI^{1,3}, FLORIAN KRONAST⁴, CLAAS ABERT⁵, ED-UARDO SERGIO OLIVEROS MATA¹, PAVLO MAKUSHKO¹, MOHAMAD-ASSAAD MAWASS⁴, VOLODYMYR P. KRAVCHUK⁶, DENIS D. SHEKA², BORIS A. IVANOV⁷, JÜRGEN FASSBENDER¹, and DENYS MAKAROV¹ — ¹Helmholtz-Zentrum-Dresden-Rossendorf, Dresden, Germany — ²Taras Shevchenko National University of Kyiv, Kyiv, Ukraine — ³Kyiv Academic University, Kyiv, Ukraine — ⁴Helmholtz-Zentrum Berlin für Materialen und Energie, Berlin, Germany — ⁵University of Vienna, Wien, Austria — ⁶Karlsruher Institut für Tech, Karlsruhe, Germany — ⁷Institute of Magnetism, Nation, Kyiv, Ukraine

Ultrathin asymmetric magnetic films are a prominent material science platform, which combines unique magnetic and electronic properties enabling prospective memory and logic spin-orbitronic devices. Here, we present the quantification mechanism to distinguish all static and dynamic micromagnetic parameters of the layer stack based on magnetometry [1] and quasi-static morphology experiments on domain wall equilibrium tilts [2]. The DW damping is found to be about 0.1 [2] and it is demonstrated to arise from a longitudinal relaxation being dominant among transversal mechanisms for ultrathin films [3].

- [1] I. A. Yastremsky et al., Phys. Rev. Appl. **12**, 064038 (2019).
- [2] O. M. Volkov et al., Phys. Rev. Appl. **15**, 034038 (2021).
- [3] I. A. Yastremsky et al., Phys. Rev. Appl. 17, L061002 (2022).

MA 17.2 Tue 9:45 POT 6

Control of magnetoelastic coupling in Ni/Fe multilayers using He+ ion irradiation — •GIOVANNI MASCIOCCHI^{1,2}, GYAN VAN DER JAGT^{3,4}, MARIA-ANDROMACHI SYSKAKI^{2,5}, ALESSIO LAMPERTI⁶, NIKLAS WOLFF⁷, ANDRIY LOTNYK⁸, JURGEN LANGER⁵, LORENZ KIENLE⁷, GERHARD JAKOB², BENJAMIN BORIE³, ANDREAS KEHLBERGER¹, DAFINE RAVELOSONA³, and MATHIAS KLÄUI² — ¹Sensitec GmbH, Mainz, Germany — ²Johannes Gutenberg University Mainz, Mainz, Germany — ³Spin-Ion Technologies, Palaiseau, France — ⁴Universite Paris-Saclay, Gif-sur-Yvette, France — ⁵Singulus Technologies AG, Kahl am Main, Germany — ⁶CNR-IMM, Agrate Brianza, Italy — ⁷Kiel University, Kiel, Germany — ⁸Institute of Surface Engineering , Leipzig , Germany

The requirements for the magnetoelastic coefficient in thin films are often demanding. For example, magnetic sensors mostly require strain immunity, while actuators require giant strain effects. One way to obtain the desired value of the saturation magnetostriction, is to use the combination of two or more materials with different magnetic and magnetoelastic properties in a multilayer fashion. However, the material choice alone, does not allow for a local control of the magnetostriction. In this study [1], we investigate the effects of He+ irradiation on the magneto-elastic properties of a Ni/Fe multi-layered stack. The progressive intermixing caused by He+ irradiation at the interfaces of the multilayer, allows us to locally change the magnetoelastic coupling sign with increasing He+ fluences.

[1] Masciocchi, et al. Appl. Phys. Lett. 121.18 182401, 2022

MA 17.3 Tue 10:00 POT 6

Simulating the magnetic structures in twisted double bilayer CrI_3 — •JUNICHI OKAMOTO¹, BOWEN YANG², TARUN PATEL², and ADAM TSEN² — ¹University of Freiburg, Freiburg, Germany — ²University of Waterloo, Waterloo, Canada

After the discovery of superconductivity in twisted bilayer graphene at magic angles, control of material properties by twisting twodimensional materials has emerged as "twistronics". In this talk, we will discuss the magnetic structures appearing in the Moiré superlattices of twisted double bilayer CrI_3 . By using classical spin simulations, we will demonstrate that the subtle competition between the exchange anisotropy and the spatially modulated interlayer coupling is the key to understanding the experimentally observed magnetic transitions. We will further explain how the interlayer charge transport depends on the magnetic structures. The effect of various domain walls and skyrmions will also be scrutinized.

MA 17.4 Tue 10:15 POT 6

•MARTIN M. KOCH, ANTONIA RIECHE, DIANA A. RATA, and KATHRIN DÖRR — Martin-Luther-Universität Halle-Wittenberg A particular type of strong interface coupling between magnets is

the exchange spring which resembles an interface-parallel domain wall formed in one (or both) magnets. Advances in thin film growth and resulting interface quality of magnetic oxides improve chances to observe such strong exchange coupling across interfaces. Nevertheless, known exchange springs in oxides are yet scarce [1], since the unambiguous identification is not straightforward. An intensely studied model system for strong interface coupling is $\rm SrRuO_3/La_{0.7}Sr_{0.3}MnO_3$ coherently grown on $SrTiO_3(001)$ substrate. We summarize here the characteristics and suggested origin of the Bloch-type exchange spring forming at this interface in bilayers grown by pulsed laser deposition. Strikingly, the spring forms in hard-magnetic SrRuO₃ where magnetic anisotropy is suppressed within few unit cells from the interface. We suggest the transfer of oxygen octahedra rotations / tilts to be responsible, a structural coupling mechanism occurring at many other coherent oxide interfaces. Implications of the noncollinear spin configuration for spintronic functionalities will be addressed. [1] A. M. Kane, Phys. Rev. Mater. 3, 014413 (2019)

MA 17.5 Tue 10:30 POT 6

Characterization of buffer-free $\operatorname{Sm}(\operatorname{Co}_{5-x}\operatorname{Cu}_x)_5$ thin films grown by molecular beam epitaxy — •GEORGIA GKOUZIA¹, DAMIAN GÜNZING², TERESA WESSELS^{2,3}, MARTON MAJOR¹, AL-PHA T. N DIAYE⁴, ANDRAS KOVACS³, HEIKO WENDE², KATHARINA OLLEFS², and LAMBERT ALFF¹ — ¹Technical University of Darmstadt, Materials Science, Darmstadt, Germany — ²University of Duisburg-Essen, Faculty of Physics and Center for Nanointegration, Duisburg, Germany — ³Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Gruenberg Institute, Forschungszentrum Juelich, Germany — ⁴Lawrence Berkeley National Laboratory, Berkeley, USA

SmCo₅ permanent magnets were already known in the 60s due to their enormous uniaxial magnetic anisotropy K1=17.2 MJ/ m^3 which has made them key materials for many applications. Sm-Co system, in a certain parameter range, undergoes a phase decomposition into a nanocomposite of SmCo₅ and Sm₂Co₁₇ phases. Since it is known that Cu stabilizes the SmCo₅ phase, in this work, bufferfree Sm(Co_{5-x}Cu_x)₅ thin films have been grown by molecular beam epitaxy (MBE). The films have been characterized by x-ray diffraction (XRD), superconducting quantum interference device (SQUID), and transition electron microscopy (TEM). High coercivity, 1.67 T has been achieved, among the largest values for buffer-free SmCo₅ films. X-ray magnetic circular dichroism (XMCD) element-specific hysteresis loops show clear evidence of the Sm-Co de-coupled moments due to Cu substitution in the Co-sublattice.

MA 17.6 Tue 10:45 POT 6

Europium oxide: Growth guide for the first monolayers on oxidic substrates — •PAUL ROSENBERGER^{1,2} and MARTINA MÜLLER² — ¹Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany — ²Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany

Interfacial oxygen exchange at oxide interfaces bears huge potential in stabilizing metastable or novel phases of functional oxides down to the monolayer limit. Consequently, controlling the underlying interfacial processes opens up the possibility to tailor and tune functionalities of oxide interfaces. By taking advantage of active oxygen supply of the substrate material, waiving any external oxygen dosage, high-quality, crystalline ultrathin films of the Heisenberg ferromagnet europium monoxide (EuO) were stabilized on YSZ (001)[1]. This socalled redox-assisted growth mode was monitored end to end by in situ x-ray photoelectron spectroscopy. The evolution of Eu 3d core levels allows us to disentangle the processes of interfacial oxygen diffusion and vacancy formation in stabilizing the very first monolayers of EuO on YSZ (001). An expedient background correction analysis is presented, which allows us to quantify the critical Eu^{3+}/Eu^{2+} ratio in the ultrathin film regime. We concluded on the key mechanisms of redox-assisted EuO/YSZ (001) thin film synthesis, merging in a universal three-process growth model that may serve as guideline for

redox-assisted synthesis of metastable low-dimensional oxides. [1] P. Rosenberger and M. Müller, Phys. Rev. Mater. 6, 044404 (2022).