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MM 29.1 Wed 11:45 SCH A 251
Band Gap and Formation Energy Inference of Solids using
Message Passing Neural Networks — ∙Tim Bechtel, Daniel
Speckhard, and Claudia Draxl — Humboldt-Universität zu Berlin,
Physics Department and IRIS Adlershof, Berlin, Germany
Graph-based neural networks and, specifically, message-passing neural
networks have shown great promise in predicting physical properties of
solids. Here, we target three tasks, formation energy regression, metal-
non-metal classification, and band gap regression, using data from the
AFLOW materials database [1]. In order to find optimal hyperparam-
eters and model architecture, we perform a neural architecture search
on the band gap regression task, using a random search algorithm.
The model is based on a message passing neural network with edge
updates [2], and provides users with uncertainty estimates via Monte-
Carlo dropout. We analyze the domain of applicability of the model,
for different space group symmetries, atomic species, and corrections
applied to the underlying calculation. While we obtain overall excel-
lent results, the model struggles to accurately predict oxide materials.
We find that the uncertainty in different domains reflects the model’s
predictive performance.

[1] S. Curtarolo et al., Comput. Mater. Sci., 58 (2012), pp. 227-235.
[2] P.B. Jørgensen et al., Preprint at arXiv:1806.03146 (2018).

MM 29.2 Wed 12:00 SCH A 251
Predicting electron density using a convolutional neural net-
work — ∙Jae-Mo Lihm1,2,3, Wanhee Lee4, and Cheol-Hwan
Park1,2,3 — 1Department of Physics and Astronomy, Seoul National
University, Seoul, Korea — 2Center for Correlated Electron Systems,
Institute for Basic Science, Seoul, Korea — 3Center for Theoretical
Physics, Seoul National University, Seoul, Korea — 4Department of
Applied Physics, Stanford University, California, USA
Machine-learning methods are being widely applied to computational
materials science. Most applications of machine learning in electronic
structure calculations focus on learning the total energy and forces,
while few works study the prediction of electronic properties. In this
work, we develop a machine-learning model for predicting electron
density using the convolutional neural network, a standard machine-
learning method for image processing. We train the neural network
using the electron density calculated from density functional theory.
We show that the trained neural network can successfully predict the
electron density of systems that were not included in the training set,
bypassing the need for the self-consistent density functional theory
calculation.

MM 29.3 Wed 12:15 SCH A 251
Chemical ordering and magnetism in CrCoNi Medium En-
tropy Alloy — ∙Sheuly Ghosh1, Vadim Sotskov2, Alexander
Shapeev2, Jörg Neugebauer1, and Fritz Körmann1,3 — 1Max-
Planck-Institut für Eisenforschung GmbH — 2Skolkovo Institute of
Science and Technology — 3Delft University of Technology
The equiatomic CrCoNi medium entropy alloy is a prototypical
multiple-principal element alloy (MPEA), exhibiting many superior
mechanical properties. Short-range order (SRO) is known to affect the
thermodynamic phase stability as well as mechanical and magnetic
properties of MPEA alloys. In CrCoNi also, the presence of SRO and
its impact on different aspects has been intensively discussed in vari-
ous studies. In our recent study, we identified the ground-state ordered
structure for this alloy combining ab initio calculations and on-lattice

machine-learning interatomic potentials. Based on these studies, an or-
dered Cr(Ni,Co)2 phase (MoPt2-type) was found. In present work, we
further discuss the stability of the newly identified ordered structure
and compare them with the previously suggested ones, particularly
with respect to magnetism, local atomic relaxation energies as well as
volume fluctuations.

MM 29.4 Wed 12:30 SCH A 251
Charge-dependent Atomic Cluster Expansion — ∙Matteo Ri-
naldi, Anton Bochkarev, Yury Lysogorskiy, Matous Mrovec,
and Ralf Drautz — Interdisciplinary Centre for Advanced Materials
Simulation, Bochum, Germany
The atomic cluster expansion (ACE) [1,2,3] has proven to be a valuable
tool to parametrize complex energy landscapes of pure elements and
alloys outperforming popular approaches based on limited body-order
descriptions. However, due to the local nature of the many body basis,
it is inherently near-sighted. Therefore, long range interactions, such
as electrostatics, are ignored in the description. Here, we introduce
charge-dependent ACE to be able to tackle the missing electrostatic
contributions. This formalism is based on the QEQ charge equilibra-
tion scheme from Rappe et al.^[4], where partial charges are obtained
by equalizing atomic electronegativities and imposing charge conserva-
tion. Moreover, atomic electronegativities and hardness are considered
as dependent on the local atomic environment. We demonstrate that
our approach yields atomic charges in agreement with those obtained
from popular partitioning schemes, such as Mulliken and Hirshfeld, in-
cluding periodic and non-periodic systems, together with an accurate
reproduction of the potential energy landscape. This work opens the
possibility to model charge transfer and dielectric response within the
increasingly popular ACE framework.

[1] R. Drautz, Phys. Rev. B 99, 014104 [2] Y. Lysogorskiy et al., npj
Comput Mater 7, 97 (2021) [3] R. Drautz, Phys. Rev. B 102, 024104
[4] Rappe, J. Phys. Chem. 1991, 95, 8, 3358*3363

MM 29.5 Wed 12:45 SCH A 251
A machine-learned interatomic potential for silica and mixed
silica-silicon systems — ∙Linus C. Erhard1, Jochen Rohrer1,
Karsten Albe1, and Volker L. Deringer2 — 1Institute of Mate-
rials Science, TU Darmstadt, Darmstadt, Germany — 2Department
of Chemistry, Inorganic Chemistry Laboratory, University of Oxford,
Oxford, United Kingdom
The interface between silica and silicon has enormous relevance in var-
ious applications, including semiconductors and novel battery materi-
als. However, atomistic modeling of this interface is a challenge due
to the different charge states of silicon and the limitations of classical
interatomic potentials. To overcome these limitations, we introduce a
machine-learning-based interatomic potential based on the non-linear
atomic cluster expansion (ACE) for various Si-O phases. This model
is based on the previously developed database for silica [1], which was
substantially extended by active learning. The new model shows im-
proved performance for high-pressure silica and is also able to describe
silica surfaces. Moreover, the use of the ACE formalism enables us to
reach more than 100 times longer time or larger length scales compared
to the Gaussian approximation potential (GAP). Finally, the poten-
tial is able to describe off-stoichiometric mixtures of Si and SiO2. This
capability is used to investigate the nanostructure of silicon monoxide.

[1] Erhard et al. A machine-learned interatomic potential for silica
and its relation to empirical models. npj Comput Mater 8, 90 (2022)
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