
SKM 2023 – MM Wednesday

MM 31: Data Driven Materials Science: Big Data and Work Flows – Machine Learning

Time: Wednesday 15:45–18:30 Location: SCH A 251

MM 31.1 Wed 15:45 SCH A 251
Neural networks trained on synthetically generated crystals
can classify space groups of ICSD powder X-ray diffrac-
tograms — ∙Henrik Schopmans, Patrick Reiser, and Pascal
Friederich — Institute of Theoretical Informatics, KIT, Karlsruhe,
Germany
Machine learning techniques have successfully been used to extract
structural information such as the crystal space group from powder
X-ray diffraction (XRD) patterns. However, training directly on sim-
ulated patterns from databases like the ICSD is problematic due to
its limited size, class-inhomogeneity, and bias toward certain structure
types. We propose an alternative approach of generating random crys-
tals with random coordinates by using the symmetry operations of each
space group. Based on this approach, we present a high-performance
distributed python framework to simultaneously generate structures,
simulate patterns, and perform online learning. This allows training
on millions of unique patterns per hour. For our chosen task of space
group classification, we achieve a test accuracy of 77.4% on new ICSD
structure types not included in the statistics dataset guiding the ran-
dom generation. Instead of space group classification, the developed
framework can also be used for other common tasks, such as augmen-
tation and mixing of patterns for phase fraction determination. Our
results demonstrate, using the domain of X-ray diffraction, how state-
of-the-art models trained on large, fully synthetic datasets can be used
to guide the analysis of physical experiments.

MM 31.2 Wed 16:00 SCH A 251
Critical Assessment of Uncertainty Estimates of Machine-
Learning Potentials — ∙Shuaihua Lu1,2, Luca M.
Ghiringhelli1, Christian Carbogno1, and Matthias Scheffler1

— 1Novel Ma- terials Discovery at the FHI of the Max-Planck-
Gesellschaft and IRIS- Adlershof of the Humboldt-Universität zu
Berlin, Berlin, Germany — 2School of Physics, Southeast University,
Nanjing, China
Machine-learning potentials (MLP) trained on first-principles datasets
are becoming increasingly popular since they enable the treatment of
larger system sizes and longer time scales compared to straight ab ini-
tio techniques. A key aspect for the use of these MLPs is to reliably
assess the accuracy viz. uncertainty of the predictions, e.g., by training
an ensemble of models. Here, we critically examine the robustness of
such uncertainty predictions using equivariant message-passing neural
networks as an example [1]. We train an ensemble of models on liquid
silicon simulated at the gradient-corrected density-functional-theory
level and compare the predicted uncertainties with actual errors for
various test sets, including liquid silicon at different temperatures and
out-of-training-domain data such as solid phases with and without
point defects as well as surfaces. These studies reveal that the pre-
dicted uncertainties are often overconfident. This is ascribed to the
insufficient diversity in the members of the ensemble, as measured via
error correlations. [1] S. Batzner et al., Nat. commun. 13, 2453 (2022).

MM 31.3 Wed 16:15 SCH A 251
Learning to Spell Materials - Coordinate-free Discovery with
Natural Language Processing — ∙Konstantin Jakob, Karsten
Reuter, and Johannes T. Margraf — Fritz Haber Institute, Berlin,
Germany
Over the last decade, computational screening with structure-based
machine learning models has led to some advances in the discovery
of novel inorganic materials. Unfortunately, the overwhelmingly large
space of possible compositions and atomic configurations together with
the exceeding rarity of well-suited candidates ultimately poses a limit
to the applicability of this approach. In contrast, purely composition-
based representations neglect differences in the chemical properties of
different crystal polymorphs and thus lack accuracy. A middle ground
between full structural and simple compositional representations has
been established for organic molecules using string representation such
as SMILES. While these have proven highly advantageous for molec-
ular discovery when combined with natural language processing mod-
els, analogous representations for the more complex class of inorganic
materials are still missing. Bridging this gap, we investigate the per-
formance of recurrent neural networks (RNNs) in predicting crystallo-
graphic properties by reading a materials composition element by ele-

ment. Their striking accuracy suggests that symmetry- or prototype-
based string representations could be generated with little computa-
tional effort at a large scale. The invertibility of these intermediate
representations via restricted structure searches is investigated, paving
the way to their application for conditional generative models.

MM 31.4 Wed 16:30 SCH A 251
Exploring materials dataspaces by combining supervised and
unsupervised machine learning — ∙Andreas Leitherer1, An-
gelo Ziletti1, Christian H. Liebscher2, Timofey Frolov3, and
Luca M. Ghiringhelli1,4 — 1NOMAD Laboratory at the FHI of
the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-
Universität (HU) zu Berlin — 2Max-Planck-Institut für Eisenforschung
— 3Lawrence Livermore National Laboratory — 4Physics Department
and IRIS-Adlershof of HU zu Berlin
To enable meaningful applications of AI to materials science, much of
current efforts is concentrated on the creation of characterized datasets.
In this talk, we discuss a rarely addressed topic - the development of
automatic tools to explore available materials-science data. In partic-
ular, we go beyond purely supervised learning by combining unsuper-
vised analysis with a recently developed crystal-structure recognition
method [1]. This neural-network (NN) model automatically learns
data representations that contain information on structurally diverse
geometries. Using clustering, physically meaningful subgroups can be
identified in the NN latent space, which are shown, e.g., to correspond
to distinct, experimentally verified grain-boundary phases [2]. More-
over, dimension-reduction analysis allows us to create low-dimensional,
interpretable materials charts that visualize complex structural data
from both theoretical and experimental origin.

[1] A. Leitherer, A. Ziletti and L. M. Ghiringhelli. Nat. Commun.
12, 6234 (2021)

[2] T. Meiners et al. Nature 579, 375-378 (2020)

MM 31.5 Wed 16:45 SCH A 251
Minimizing data requirements by transfer learning for struc-
ture search on organic/inorganic interfaces — ∙Elias Fösleit-
ner, Johannes Cartus, Lukas Hörmann, and Oliver T. Hof-
mann — Institute of Solid State Physics, Graz University of Technol-
ogy, Graz, Austria
Performing structure search of organic molecules on metallic surfaces
requires finding the structure with the lowest energy. However, cal-
culating energies using conventional DFT codes proves to be a time-
consuming task since single calculations are expensive and the number
of configurations is large. To avoid the calculation of all possible struc-
tures, machine learning techniques such as Gaussian process regression
have shown to be a useful tool in order to reduce the amount of DFT
data needed. In our work we try to further reduce the amount of nec-
essary data by using transfer learning from one substrate to another.
To do this we include DFT data from structures of more than one
substrate in our training set. In order to calculate the similarities be-
tween structures on different substrates we use the SOAP descriptor
combined with an alchemical kernel which provides couplings between
the different substrate elements. By optimizing these couplings, al-
though molecule-substrate interactions differ notably (e.g. the interfa-
cial charge transfer) between different substrates, we can save up to 50
% of the training data for one substrate A by also using the data of an-
other substrate B. This serves as a stepping stone for the investigation
of structures on computationally costly substrates.

15 min. break

MM 31.6 Wed 17:15 SCH A 251
Accelerating the Search for High-Performance, Novel Ma-
terials with Active Learning — ∙Thomas A. R. Purcell1,
Matthias Scheffler1,2, Luca M. Ghiringhelli1,2, and Christian
Carbogno1 — 1The NOMAD Laboratory at the FHI of the Max-
Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität
zu Berlin — 2Physics Department and IRIS-Adlershof at Humboldt
Universität zu Berlin, Berlin, Germany.
Active-learning frameworks have the potential to greatly accelerate the
search for new materials. By balancing exploitation and exploration,
these approaches can efficiently search through materials space and
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find the regions that are most likely to contain promising candidate
materials [1]. Here we present an active learning framework, that uses
an ensemble of expressions found by the sure-independence screening
and sparsifying operator (SISSO) approach [2,3], and we demonstrate
it for the example of discovering new thermal insulators. We statisti-
cally process the predictions of independent SISSO models to automat-
ically select the most promising material candidates and then calculate
their thermal conductivity 𝜅L using the ab initio Green Kubo method
[4]. Using this approach we are able to find multiple new thermal
insulators and gain insights into what is driving down their 𝜅L.
[1] A. G. Kusne, et al. Nat. Comm. 11, 5966 (2020)
[2] R. Ouyang, et al. Phys. Rev. Mater. 2, 083802 (2018)
[3] T. A. R. Purcell, et al. J. Open Source. Softw. 7, 3960 (2022)
[4] F. Knoop, et al. arXiv:2209.12720

MM 31.7 Wed 17:30 SCH A 251
Machine learning discovery of new materials — ∙Jonathan
Schmidt1,2, Hai-Chen Wang2, Noah Hoffman2, Tiago
Cerqueira3, Pedro Borlido3, Pedro Carrico3, Love
Pettersson4, Claudio Verdozzi4, Silvana Botti1, and Miguel
Marques2 — 1Friedrich-Schiller-University Jena, Germany —
2Martin-Luther-University Halle-Wittenberg, Germany — 3University
of Coimbra, Portugal — 4Lund University, Sweden
Graph neural networks for crystal structures typically use the atomic
species and atomic positions as input. We construct crystal-graph
attention networks replacing these precise bond distances with embed-
dings of graph distances. This allow us to perform high-throughput
studies based on both compositions and crystal structure prototypes.
Combining a newly curated dataset of 3M materials and the networks
we have already scanned more than two thousand prototypes spanning
a space of more than 5 billion materials and identified tens of thousands
of theoretically stable compounds. We also demonstrate the effective-
ness of transfer learning to adapt the networks to new domains such
as of two dimensional structures.

Schmidt et al. Crystal graph attention networks for the prediction
of stable materials, Sci. Adv. 7.49 (2021)

Schmidt et al., Large-scale machine-learning-assisted exploration of
the whole materials space, arXiv:2210.00579 (2022)

Wang et al., Symmetry-based computational search for novel binary
and ternary 2D materials, submitted (2022)

MM 31.8 Wed 17:45 SCH A 251
Data-driven magneto-elastic interatomic potentials for dis-
covering novel phases of transition metal alloys — ∙Mani
Lokamani1, Kushal Ramakrishna4, Julian Tranchida3, Sve-
toslav Nikolov2, Hossein Tahmasbi4, Michael Wood2, and At-
tila Cangi4 — 1HZDR Dresden, Germany — 2SNL New Mexico,
USA — 3CEA Cadarache, France — 4CASUS Görlitz, Germany
Structural prediction methods are used for identifying stable and
metastable structures in a broad spectrum of materials. The pres-
ence of the electron spin degree of freedom in magnetic materials
increases the complexity of finding such structures, constraining the
analysis to the thermodynamically most relevant structures in a nar-
row range of temperatures and pressures. We achieve a search over
much wider temperature and pressure conditions by utilizing machine-
learning interatomic potentials based on the spectral neighbor analysis
method within the coupled spin-molecular dynamics framework imple-
mented in LAMMPS. This data-driven methodology enables predict-
ing the properties of magnetic materials on much larger spatial, spin,
and temporal domains and is parametrized by first-principles data.

Leveraging this methodology, we predict the formation of metastable
crystalline structures in transition metal alloys (FeNi, FeMn, FeCr,
FeCo, FeGd) at high temperature-pressure conditions and assess their
magnetic properties. This enables studying long-range spin structures
in novel phases of transition metal alloys and complements the quest
for permanent magnets for renewable energy applications that do not
depend on rare-earth elements.

MM 31.9 Wed 18:00 SCH A 251
FAIR Modelling Recipes for High-Throughput Screening
of Metal Hydrides — ∙Kai Sellschopp1, Philipp Zschumme2,
Michael Selzer2, Claudio Pistidda1, and Paul Jerabek1 —
1Institute for Hydrogen Technology, Helmholtz-Zentrum Hereon,
Geesthacht, Germany — 2IAM - Microstructure Modelling and Simu-
lation, Karlsruhe Institute of Technology, Karlsruhe, Germany
A simple modelling recipe for calculating the hydrogenation enthalpy
of metal hydrides with ab-initio methods is presented. It consists of
the everyday tasks of a computational materials scientist: relaxing
a structure, optimising its volume, and calculating vibrational ener-
gies. The corresponding workflow is implemented in the framework of
KadiStudio[1], where the scientific process is broken down into simple
input-processing-output (IPO) tasks. The approach allows to track the
inputs and outputs, to easily re-use the modular tasks in other work-
flows, and to share the workflow as a simple bash or python script.
Therefore, not only the generated research data, but also the workflow
itself fully comply with the FAIR data principles. As a first applica-
tion, the recipe is employed to test how the different ingredients of
an ab-initio calculation (e.g. xc-functional) affect the accuracy of pre-
dicting hydrogenation enthalpies. This helps to make better choices
for studying this class of materials in the future and to judge the un-
certainty in existing data. Furthermore, the standardized workflow
enables a reliable high-throughput screening of new candidate materi-
als for high-density hydrogen storage at near ambient conditions.

[1] L. Griem, et al., Data Science Journal 21, 16 (2022)

MM 31.10 Wed 18:15 SCH A 251
Take Two: Δ-Machine Learning for Molecular Co-Crystals —
∙Simon Wengert1, Gábor Csányi2, Karsten Reuter1, and Jo-
hannes Theo Margraf1 — 1Fritz-Haber Institute, Berlin, Germany
— 2University of Cambridge, Cambridge, United Kingdom
Co-crystals are a highly interesting material class, as varying their
components and stoichiometry in principle allows tuning supramolec-
ular assemblies towards desired physical properties. The in silico pre-
diction of co-crystal structures represents a daunting task, however,
as they span a vast search space and usually feature large unit-cells.
This requires theoretical models that are accurate and fast to eval-
uate, a combination that can in principle be accomplished by mod-
ern machine-learned (ML) potentials trained on first-principles data.
Crucially, these ML potentials need to account for the description of
long-range interactions, which are essential for the stability and struc-
ture of molecular crystals. In this contribution, we present a strategy
for developing Δ-ML potentials for co-crystals, which use a physical
baseline model to describe long-range interactions. The applicability
of this approach is demonstrated for co-crystals of variable compo-
sition consisting of an active pharmaceutical ingredient and various
co-formers. We find that the Δ-ML approach offers a strong and con-
sistent improvement over the density-functional tight binding baseline.
Importantly, this even holds true when extrapolating beyond the scope
of the training set as demonstrated via molecular dynamics simulations
at ambient conditions.
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