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MM 4.1 Mon 10:15 C 243
Investigating Structural Descriptors for High-Dimensional
Neural Network Potentials — ∙Moritz R. Schäfer1,2,
Moritz Gubler3, Stefan Goedecker3, and Jörg Behler1,2 —
1Theoretische Chemie II, Ruhr-Universität Bochum, Germany —
2Research Center Chemical Sciences and Sustainability, Research Al-
liance Ruhr, Germany — 3Department of Physics, University of Basel,
Switzerland
High-dimensional neural network potentials (HDNNPs) are a well es-
tablished technique to efficiently compute energies and forces akin to
ab initio standards for conducting extensive molecular dynamics simu-
lations of intricate systems in high dimensions. This method expresses
the total energy from environment-specific atomic energy contribu-
tions, with the option to incorporate electrostatic interactions utiliz-
ing flexible atomic charges. The reliability of both components signif-
icantly depends on the accuracy of the structural descriptors used to
define the atomic environments. Here, we combine atom-centered sym-
metry functions with the newly introduced overlap matrix descriptor.
Furthermore, we analyze the strengths and weaknesses of each descrip-
tor, providing insights through demonstrations on benchmark systems.

MM 4.2 Mon 10:30 C 243
Universally Accurate or Specifically Inadequate? Stress-
Testing General Purpose Machine Learning Interatomic Po-
tentials — ∙Konstantin Jakob1, Karsten Reuter1, and Jo-
hannes T. Margraf1,2 — 1Fritz-Haber-Insttitut der MPG, Berlin
— 2Universität Bayreuth
Machine learning interatomic potentials (MLIPs) have revolutionized
the field of atomistic materials simulation, both due to their remark-
able accuracy - when trained adequately - and their computational
efficiency compared to established ab initio methods. Very recently,
several general purpose MLIPs have been reported, which are broadly
applicable across the periodic table. These represent a fascinating op-
portunity for materials discovery, provided that they are robust and
transferable. In this context, metastability and polymorphism pose sig-
nificant challenges, as the underlying training data sets cannot cover
the full space of such structures and compositions. In order to stress
test current general purpose MLIPs, we evaluate models based on the
M3GNet and MACE architectures on a unique set of inorganic, crys-
talline materials generated by atom substitutions. Validating these
two models, we shine light on both successes and drawbacks of using
general purpose MLIPs and evaluate the opportunities that further
research can hold.

MM 4.3 Mon 10:45 C 243
Pressure-transferable neural network models for density-
functional theory — ∙Timothy Callow1, Lenz Fiedler1, Nor-
mand Modine2, and Attila Cangi1 — 1Center for Advanced Sys-
tems Understanding, Helmholtz-Zentrum Dresden-Rossendorf, Unter-
markt 20, Görlitz, 02826, Saxony, Germany — 2Computational Ma-
terials and Data Science, Sandia National Laboratories, 1515 Eubank
Blvd, Albuquerque, 87123, NM, USA
Density functional theory (DFT) is well-known as the workhorse
of electronic structure calculations in materials science and quan-
tum chemistry. However, its applications stretch beyond these
traditionally-studied fields, such as to the warm-dense matter (WDM)
regime. Under WDM conditions, there are different challenges to con-
sider (compared to ambient conditions) when using DFT. Namely, the
electronic structure problem must be solved (i) for large particle num-
bers, (ii) for a range of temperatures, and (iii) for a range of pressures.
Promising solutions were demonstrated for problems (i) and (ii) [1,2]
using a recently-developed workflow to machine-learn the local density
of states (LDOS) [3]. In this talk, we discuss our progress in devel-
oping a solution for problem (iii). This problem presents additional
challenges because the LDOS varies quite significantly with changes in
the pressure, making it a difficult problem for neural network models.

[1] L Fiedler et al., npj Comput Mater 9, 115 (2023) [2] L Fiedler et
al., Phys. Rev. B 108, 125146 (2023) [3] J. A. Ellis et al., Phys. Rev.
B 104, 035120 (2021)

MM 4.4 Mon 11:00 C 243
Towards Multi-Fidelity Machine Learning Using Robust Den-

sity Functional Tight Binding Models — ∙Mengnan Cui1,2,
Karsten Reuter1, and Johannes T. Margraf1,2 — 1Fritz-Haber-
Institut der MPG, Berlin — 2University of Bayreuth, Physical Chem-
istry V: Theory and Machine Learning
The Density Functional Tight Binding (DFTB) approach allows elec-
tronic structure based simulations at length and time scales far be-
yond what is possible with first-principles methods. Unfortunately,
the sparse availability of DFTB parameters across the periodic table
is a significant barrier to the use in many cases. To this end, we intro-
duce a systematic workflow for the robust parameterization of DFTB
across the periodic table. Specifically, the parameters for most ele-
ments are obtained via Bayesian Optimization on a consistent set of
real and artificial elemental solids, spanning a wide range of coordi-
nation environments. Elements which do not form stable elemental
solids are treated separately, using representative binary compounds
as reference. In seeking to bridge the gap towards higher-level quan-
tum mechanical theories, the use of the DFTB parameterization in
multi-fidelity machine learning is explored.

MM 4.5 Mon 11:15 C 243
Application of Question Answering method to extract infor-
mation from materials science literature — ∙Matilda Sipilä1,
Farrokh Mehryary2, Emil Nuutinen2, Sampo Pyysalo2, Filip
Ginter2, and Milica Todorović1 — 1Department of Mechanical
and Materials Engineering, University of Turku, Turku, Finland —
2Department of Computing, University of Turku, Turku, Finland
Scientific text is a promising source of data in materials science, and
there is ongoing research how to utilise textual data in materials dis-
covery. In addition to the more established approaches like named
entity recognition or dictionary based methods, new machine learning
tools such as question answering (QA) are becoming available. The
advantages of this method are that it is easy to scale and that it does
not require manual text labeling or annotating work, but there may
be some loss in precision compared to other methods.

We tested the performance of the QA method on the well-known
task of information extraction. We extracted bandgap values of halide
perovskite materials from scientific literature. Large language models
were tuned towards a specific QA task and then used to select the
correct answer for the question about materials properties. In com-
parison to more established methods, the QA method performed well
and we were able to extract correct information from text. This infor-
mation can be used to map the space of materials properties and find
promising new materials solutions. The potential in QA method lies
in versatility, accessibility and scalability, since it is easy to use even
for researchers with no previous knowledge of language technology.

15 min. break

MM 4.6 Mon 11:45 C 243
Transferable interatomic potential of water with the atomic
cluster expansion — ∙Eslam Ibrahim, Yury Lysogorskiy, and
Ralf Drautz — ICAMS, Ruhr Universität Bochum, 44780 Bochum,
Germany
We present a transferable parameterization of water using the Atomic
Cluster Expansion (ACE). Our approach efficiently samples liquid wa-
ter by employing static calculations of various ice phases. The active
learning feature of ACE-based D-optimality algorithm is utilized to se-
lect relevant water configurations, circumventing computational chal-
lenges associated with ab-initio molecular dynamics (AIMD) simula-
tions. Our results demonstrate that ACE descriptors enable a potential
fitted solely on ice structures to provide a very good description of liq-
uid water. The developed potential shows remarkable agreement with
first-principles references, accurately capturing structural and dynamic
properties of liquid water. This includes pair correlation functions, co-
valent bonding profiles, hydrogen bonding profiles, diffusion coefficient,
and thermodynamic properties like the melting point of water. This
work introduces an efficient sampling technique for machine learning
potentials in water simulations, along with a transferable interatomic
potential that rivals the accuracy of ab-initio references. This advance-
ment enhances our understanding of water’s behavior at the atomic
level and opens new avenues for studying complex aqueous systems.
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MM 4.7 Mon 12:00 C 243
Automatic extraction and analysis of dislocations in atom
probe tomography data using skeletonization — ∙Alaukik
Saxena, Baptiste Gault, and Christoph Freysoldt — Max-
Planck-Institut für Eisenforschung GmbH, Düsseldorf 40237, Germany
Atom probe tomography (APT) is a unique technique that provides 3D
elemental distribution with a near-atomic resolution for a given ma-
terial. Extracting and analyzing microstructural features in 3D APT
data is challenging and time-intensive, given their complex morphol-
ogy. Here, we introduce a workflow to systematically extract linear
microstructural features, particularly dislocations, from the APT data.
The workflow extracts isosurface meshes from APT data and, as a pre-
processing step, filters them using principal component analysis (PCA)
to find geometrically anisotropic microstructural features. Further, a
topology analysis concept called skeletonisation is applied to extract
the linear graphs or skeletons of each mesh. Since the skeleton encap-
sulates the underlying geometry of a mesh, it is used to identify and
segment linear features or dislocation segments even in very complex
microstructures containing, for example, dislocation networks. This
enables a robust composition and geometric analysis of dislocations
in APT data. Additionally, the workflow integrates crystallographic
data from APT to determine dislocation orientation in the crystal co-
ordinate system. Overall, this advanced workflow significantly reduces
manual effort and opens new possibilities for high-throughput studies
in material science.

MM 4.8 Mon 12:15 C 243
Stable diffusion based microstructure reconstruction and gen-
eration — ∙Yixuan Zhang1, Teng Long2, and Hongbin Zhang1

— 1Institute of Materials Science, Technical University of Darmstadt,
64287, Darmstadt, Germany — 2School of Materials Science and En-
gineering, Shandong University, 250061, Jinan, China
In recent years, the reconstruction and generation of microstructures
have become pivotal in understanding and predicting the mechani-
cal and functional properties of materials. This study introduces a
novel approach to microstructure reconstruction based on stable dif-
fusion models. Our implementation employs a stable diffusion model
to capture the intricate patterns and features inherent in microstruc-
tures, which can be adapted to further refine reconstructed the phase
and grain orientation of microstructures, ensuring their statistical and
morphological fidelity to the original samples. The model is trained
using a comprehensive dataset of 500,000 synthetic micrographs, en-
suring the model’s robustness and versatility across various material
classes. Our results demonstrate that our approach outperforms con-
ventional methods in terms of accuracy, speed, and adaptability. The
reconstructed microstructures exhibit remarkable similarity to their
counterparts, both qualitatively and quantitatively. Furthermore, the
generative capabilities of our model pave the way for optimizing novel
microstructures, aiding in the design of materials with desired proper-
ties.

MM 4.9 Mon 12:30 C 243

Automatic Generation of Atomic Structure Datasets for
Machine Learning Potentials: Alloys and Applicatoin to
Mg/Al/Ca — ∙Marvin Poul1, Liam Huber2, and Joerg
Neugebauer1 — 1Max-Planck- Institut für Eisenforschung, Düssel-
dorf, Germany — 2Grey Haven Solutions, Victoria, Canada
We extend a recently proposed strategy for automatically generating
training data for machine learning interatomic potentials (MLIP) to
alloys.[1]

It is based on small periodic structures (around ten atoms) of var-
ious concentrations that are sampled from all crystallographic space
groups. These structures are minimized and then again randomly per-
turbed in positions and cell shape around the obtained local minima.
This procedure akin to ab initio random structure search yields sam-
ples around the relevant parts of phase space without prior knowledge
automatically. Only the cell stoichiometry and the magnitude of the
random perturbations remain hyperparameters in this approach.

We explore the natural question of how well potentials can extrap-
olate in the combinatorically large concentration space and test that
they accurately describe structures near the convex hull as well as
larger super cells of random alloys. Finally we verify the potentials
on binary phase diagrams (and defect phase diagrams) in the ternary
Mg/Al/Ca system.

This opens the way for automatic parametrization of MLIPs, promis-
ing to bring ab initio accuracy to a large number of systems at scale.

[1]: https://doi.org/10.1103/PhysRevB.107.104103

MM 4.10 Mon 12:45 C 243
Physics-informed neural network for predicting the Gibbs
free energy — ∙Clement Paulson1, Amin Sakic2, Vedant Dave3,
Elmar Rueckert3, Ronald Schnitzer1, and David Holec1 —
1CDL KnowDAS, Department of Materials Science, Montanuniversität
Leoben, Austria — 2Department of Materials Science, Montanuniver-
sität Leoben, Austria — 3CPS Lab, Montanuniversit Leoben, Austria
We employ a physics-informed neural network approach in conjunc-
tion with the CALPHAD formalism to determine the Gibbs free en-
ergy of alloys. The Gibbs free energy, essential for CALPHAD simula-
tions, is determined by predicting the Redlich-Kister parameter using
a composite neural network utilizing novel descriptors derived from
the atomic, composition-based, and thermodynamic properties of ele-
ments. The composite neural network comprises a low-fidelity network
trained on CALPHAD-generated mixing enthalpies and a high-fidelity
network trained on experimental mixing enthalpies. These two models
are further connected to a physics-informed neural network, which de-
termines the Redlich-Kister parameters. The predicted Redlich-Kister
parameters can then be directly implemented into a thermodynamic
database file for immediate use with existing CALPHAD software.
This approach holds promise for expediting materials development and
phase stability determination. Comparative experimental results high-
light the accuracy and potential of this deep learning-based method,
offering a novel path for forecasting the Gibbs free energy in multi-
component systems and accelerating the development of databases.
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