DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2026 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

BP: Fachverband Biologische Physik

BP 22: Statistical Physics of Biological Systems II (joint session DY/BP)

BP 22.4: Talk

Wednesday, March 11, 2026, 16:00–16:15, ZEU/0114

Efficient control of F1 molecular motor — •Deepak Gupta — Institut für Physik und Astronomie, Technische Universität Berlin, Germany

Designing low-dissipation control driving protocols for small-scale systems is an active field of research. In this talk, I will specifically discuss designing efficient driving procedures for a biomolecular motor-the F1ATPase. In general, designing such protocols is challenging due to the spatial nonlinearity of the systems and the presence of environmental thermal fluctuations. Nonetheless, a near-equilibrium (linear response) framework is found to apply to a broad class of small-scale systems. We follow this framework to design non-trivial protocols to drive the F1’s γ-shaft to synthesize ATP at low-dissipation cost. Our analysis reveals that the designed protocols, based on the linear response approach, dissipate lower energy as compared to the constant velocity driving protocol for a wide range of protocol durations[1]. In the second part of my talk, I will show our recent experimental results on the F1 ATPase motor, where we compared the dissipation of driving this motor using two experimentally viable protocols: angle clamp and torque clamp. Our experimental results (supported by analytical findings) suggest that angle clamp driving requires less work than that of the torque clamp[2].

[1] J. Phys. Chem. Lett. 13 (51), 11844-11849 (2022). [2] Phys. Rev. Lett. 135 (14), 148402 (2025).

Keywords: Optimal control; Biological motors; Dissipation; Nonequilibrium thermodynamics; Stochastic thermodynamics

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2026 > Dresden