Dresden 2026 – scientific programme
Parts | Days | Selection | Search | Updates | Downloads | Help
HL: Fachverband Halbleiterphysik
HL 24: 2D Materials IV – Emerging materials and properties
HL 24.8: Talk
Wednesday, March 11, 2026, 11:30–11:45, POT/0081
Efficient GW band structure calculations using Gaussian basis functions and application to atomically thin transition-metal dichalcogenides — •Rémi Pasquier1, María Camarasa-Gómez2,3, Anna-Sophia Hehn4, Daniel Hernangómez-Pérez5, and Jan Wilhelm1 — 1Institute of Theoretical Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, 93053 Regensburg, Germany — 2Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain — 3Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Facultad de Química, UPV/EHU, 20018 Donostia-San Sebastián, Spain — 4Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Strasse 1, 24118 Kiel, Germany — 5CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 San Sebastián, Spain
The GW approximation is widely used to compute self-energies and related electronic properties but remains computationally demanding, motivating the development of more efficient approaches. We present a space-time GW algorithm for periodic systems in a Gaussian basis with spin-orbit coupling, enabling accurate and efficient quasiparticle band-structure calculations for atomically thin materials. For monolayer MoS2, MoSe2, WS2, and WSe2, the resulting GW band gaps agree on average within 50 meV with plane-wave reference values. Full G0W0 band structures can be computed in less than two days on a laptop (Intel i5, 192 GB RAM) or under 30 minutes using 1024 cores.
Keywords: GW method; Band Structure calculations; Density functional theory; Spin-orbit coupling; Transition metal dichalcogenides
