Dresden 2026 – scientific programme
Parts | Days | Selection | Search | Updates | Downloads | Help
MA: Fachverband Magnetismus
MA 50: Bulk Materials: Soft and Hard Permanent Magnets
MA 50.8: Talk
Thursday, March 12, 2026, 16:45–17:00, POT/0151
Orbital magnetic moment and magnetocrystalline anisotropy of Fe2AlB2 — •Nicolas Josten1, Benedikt Eggert1, Benedikt Beckmann2, Anna Semisalova1, Ralf Meckenstock1, Konstantin Skokov2, Hanna Pazniak3, Thierry Ouisse3, Katharina Ollefs1, Heiko Wende1, Oliver Gutfleisch2, Michael Farle1, and Ulf Wiedwald1 — 1Faculty of Physics and Center for Nanointegration (CENIDE), University Duisburg Essen, Germany — 2Functional Materials, Institute of Materials Science, Technical University of Darmstadt, Germany — 3LMGP, Grenoble INP, CNRS, Université Grenoble Alpes, France
Fe2AlB2 is a ferromagnet known for its considerably high magnetocrystalline anisotropy (1 MJ·m−3 at 10 K [1]), tunable Curie-temperature around ambient temperature (stoichiometric TC = 291 K [1]) and magnetocaloric effect of moderate size (ΔTad(2 T) = 2.2 K [2]). It can be easily synthesized out of earth-abundant and low-cost elements. Here we combine X-ray magnetic circular dichroism (XMCD) and ferromagnetic resonance (FMR) measurements on single crystals to determine the orbital moment and correlate it with the high magnetocrystalline anisotropy. Additional magnetometry measurements along the principal crystallographic directions show the development of anisotropy across the ferromagnetic to paramagnetic phase transition.
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 405553726 – SFB/TRR 270.
[1] N. Josten et al. Phys. Rev. Materials 9, 054405 (2025)
[2] B. Beckmann et al. J. Appl. Phys. 133, 173903 (2023)
Keywords: Ferromagnetic resonance; X-ray magnetic circular dichroism; permanent magnet; magnetocaloric effect; magnetic anisotropy
