Parts | Days | Selection | Search | Updates | Downloads | Help

MM: Fachverband Metall- und Materialphysik

MM 13: Data-driven Materials Science: Big Data and Workflows I

Tuesday, March 10, 2026, 10:15–12:45, SCH/A251

10:15 MM 13.1 Surface reconstruction via automated LEED analysis based on Bayesian optimization — •Xiankang Tang and Hongbin Zhang
10:30 MM 13.2 Structural relaxations for nonstoichiometric alloys without forces — •Luca Numrich and Hongbin Zhang
10:45 MM 13.3 A Python-based workflow for phase identification and mapping via Raman spectroscopy — •Felix Drechsler, Mahnaz Mehdizadehlima, Cameliu Himcinschi, David Rafaja, and Jens Kortus
11:00 MM 13.4 Automated Prediction of Phase Stability with ab-initio Accuracy — •Prabhath Chilakalapudi, Marvin Poul, Jan Janssen, and Jörg Neugebauer
  11:15 15 min. break
11:30 MM 13.5 Towards Disorder-Aware Materials Discovery - Recognizing and Modeling Crystallographic Disorder — •Konstantin S. Jakob, Aron Walsh, Karsten Reuter, and Johannes T. Margraf
11:45 MM 13.6 Efficient Exploration of the Unknown: Distance-Based Active Learning with SISSO Descriptors and Mendeleev Similarities for Materials Discovery — •Sreejani Karmakar, Akhil S. Nair, Lucas Foppa, and Matthias Scheffler
12:00 MM 13.7 Where Are Large Language Models Actually Useful for Materials Design? — •Hedda Oschinski, Maximilian L. Ach, David Greten, Konstantin S. Jakob, Christian Carbogno, and Karsten Reuter
12:15 MM 13.8 Predictive and interpretable machine learning models for thermodynamics tuning of metal hydrides for hydrogen storage — •Sinan S. Faouri, Kai Sellschopp, Claudio Pistidda, and Paul Jerabek
12:30 MM 13.9 Score-based diffusion models for accurate crystal structure inpainting and reconstruction of hydrogen positions — •Timo Reents, Arianna Cantarella, Marnik Bercx, Pietro Bonfà, and Giovanni Pizzi
100% | Screen Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2026 > Dresden