DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2026 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

TT: Fachverband Tiefe Temperaturen

TT 44: Nonequilibrium Quantum Systems I (joint session TT/DY)

TT 44.4: Talk

Wednesday, March 11, 2026, 10:15–10:30, CHE/0091

Frozen non-equilibrium dynamics of exciton Mott insulators in moiré superlatticesShibin Deng1, •Jonas Reimann2, Heonjoon Park3, Jonas M. Peterson1, Ammon Fischer2, Xiaodong Xu3, Dante M. Kennes2,4, and Libai Huang11Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA — 2Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, 22761 Hamburg, Germany — 3Department of Physics, University of Washington, Seattle, WA 98195, USA — 4Institut für Theorie der Statistischen Physik, RWTH Aachen University, 52056 Aachen, Germany

Moiré superlattices, such as those formed from transition metal dichalcogenide heterostructures, have emerged as an exciting platform for exploring quantum many-body physics. A key open question is the coherence and dynamics of the quantum phases arising from photoexcited moiré excitons, particularly amid dissipation. Here we use transient photoluminescence and ultrafast reflectance microscopy to image non-equilibrium exciton phase transitions. Counterintuitively, experimental results and theoretical simulations indicate that strong long-range dipolar repulsion freezes the motion of the Mott insulator phase for over 70 ns. In mixed electron-exciton lattices, reduced dipolar interactions lead to diminished freezing dynamics. These findings challenge the prevailing notion that repulsion disperses particles, whereas attraction binds them. This talk focuses on the theoretical efforts that support the experimental data.

Keywords: Moiré superlattice; excitons; non-equilibrium dynamics

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2026 > Dresden