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DY 14.1 Mon 15:00 HUL/S186
Machine-learned classical density functional theory in higher
dimensions with convolutional layers — FeLix GriTscH, JENS
WEIMAR, and e MARTIN OETTEL — Institut fiir Angewandte Physik,
Universitat Tiibingen

Through minimization of a grand free energy functional in classical
density functional theory (¢cDFT), inhomogeneous systems in equilib-
rium can be efficiently computed. For that, the functional of the excess
(over ideal gas) free energy is required which is known explicitly only in
a few cases. Recent advancements use machine learning for construct-
ing this functional from simulation data, mostly for systems with one-
dimensional, planar inhomogeneities. We propose a machine learning
model for application in two dimensions [1] akin to density functionals
in weighted density forms, as, e.g., in fundamental measure theory.
We implement the model with fast convolutional layers only and ap-
ply it to a system of hard disks in fully 2D inhomogeneous situations.
The model is trained on a combination of smooth and steplike exter-
nal potentials in the fluid phase. Pair correlation functions from test
particle geometry show very satisfactory agreement with simulations
although these types of external potentials have not been included in
the training. The method should be fully applicable to 3D problems.

[1] F. Glitsch, J. Weimar and M. Oettel, Phys. Rev. E 111, 055305
(2025)

DY 14.2 Mon 15:15 HUL/S186
Scalable Boltzmann Generators for equilibrium sampling
of large-scale materials — eMAXIMILIAN ScCHEBEK!', FRANK
Nogl2:3:4 and Jurta RocaLl:® — 1Fachbereich Physik, Freie Uni-
versitiat Berlin, 14195 Berlin — 2Fachbereich Mathematik und Infor-
matik, Freie Universitit Berlin, 14195 Berlin — 3Microsoft Research
Al for Science, 10178 Berlin — 4Department of Chemistry, Rice Uni-
versity, Houston, Texas 77005, USA — SInitiative for Computational
Catalysis, Flatiron Institute, New York, New York 10010, USA

Generating equilibrium ensembles is essential for modeling molecules
and materials, yet traditional simulators like molecular dynamics suf-
fer from limited sampling efficiency. Boltzmann Generators introduced
the concept of one-shot deep learning for equilibrium sampling, but
scalability to large systems has remained a major challenge. Here,
we overcome this scaling limitation with a new Boltzmann Generator
architecture that can model large materials systems. Our approach
combines augmented coupling flows with graph neural networks to
exploit local environments, enabling energy-based training and rapid
inference. Compared to previous designs, it trains faster, uses fewer
resources, and achieves superior sampling efficiency. Crucially, it trans-
fers to much larger system sizes, allowing efficient sampling of materials
with simulation cells exceeding a thousand atoms. We demonstrate its
capabilities on Lennard-Jones crystals, mW water ice phases, and the
silicon phase diagram, producing accurate equilibrium ensembles and
free energies across scales where finite-size effects vanish.

DY 14.3 Mon 15:30 HUL/S186
Autoencoder Learning Dynamics on MCMC Ising Dataset
— oeMax WriNnMANND23 and Miriam KropoTek!3 — University
of Stuttgart, Stuttgart Center for Simulation Science, SimTech Clus-
ter of Excellence EXC 2075, Stuttgart, Germany — 2University of
Stuttgart, Interchange Forum for Reflecting on Intelligent Systems,
IRIS3D, Stuttgart, Germany — 3Heidelberger Akademie der Wis-
senschaften, WIN-Kolleg, Heidelberg, Germany.

While consistent and abstract descriptions of learning dynamics in neu-
ral networks remain rare, they have become omnipresent and are used
in many branches of science. As a result, predicting dynamics under
diverse choices of ML model parameters can fail catastrophically and
it remains difficult to mitigate these failures. Reliable control requires
a deep understanding of the relevant mechanisms and conditions for
learning particular kinds of datasets. Our study focuses on autoen-
coder architectures that perform well if they encode the dataset into
a compressed representation that reflects core physical concepts of the
data it is trained on, succeeding at a self-learned inverse model to de-
code this representation to reconstruct the original input (of physical
origin). Some physical concepts are learned in a particular order, which
depend on theoretical complexity of the representation and that of the
ML architecture. We measure generalization ability against hard the-

Location: HUL/S186

oretical baselines and investigate the information geometry, stability,
and physical interpretability of latent space over training time.

DY 14.4 Mon 15:45 HUL/S186
Learning order: can neural networks discover phase tran-
sitions without symmetry functions? — eCARrRINA KARNER —
Institute for Theoretical Physics, TU Wien, Vienna, Austria

Phase transitions in soft matter systems from crystallization to gela-
tion arise from collective particle rearrangements that are challenging
to capture in full microscopic detail. Conventional approaches rely
on order parameters or symmetry functions to characterize emerging
structures, but such descriptors may overlook crucial features in the
often complex organisation of biolgical materials or synthetic super-
structures. Here we investigate whether machine learning can uncover
these hidden features directly from raw particle configurations. Using
autoencoders trained on simulated trajectories of serveral soft mat-
ter systems, we show that the latent space encodes clear signatures of
structural transitions without the need for handcrafted inputs. Our
results suggest that neural networks can serve as unbiased tools to
detect and interpret phase behavior in complex soft matter systems,
revealing patterns that elude traditional symmetry-based analysis.

DY 14.5 Mon 16:00 HUL/S186
Microscopy on Autopilot: Self-Supervised Transformers for
Feature Detection and Control — eDamIAN BALAZ, GIANMARCO
Ducct, CHRISTOPH SCHEURER, KARSTEN REUTER, and HENDRIK H.
HEeeNEN — Fritz-Haber-Institut der MPG, Berlin

The evaluation of microscopy experiments often relies on manual in-
spection or supervised machine learning. The former is inefficient,
whereas the latter requires extensive labeling and may introduce hu-
man bias. Self-supervised learning, by contrast, learns from raw image
data, capturing intrinsic visual patterns without the need for man-
ual annotation. This improves generalization and objectivity, mak-
ing it ideal for complex and dynamic microscopy data. Motivated by
these advantages, we use a pre-trained self-supervised machine learning
model (DINO), based on vision transformer architecture. This consti-
tutes our central tool for feature detection and temporal analysis in
microscopy experiments.

We demonstrate the versatility of our approach for two microscopy
experiments: i) observing graphene flake growth on liquid copper ii)
tracking crack formation in a cobalt oxide catalyst. In both cases, the
model enables label-free, qualitative monitoring by identifying related
structures based on similarity in the learned feature space. Beyond
using it for analysis, we show how the same feature space representa-
tions can be used to predict experimental dynamics to autonomously
steer processes toward desired targets via planning in feature space.
Our findings highlight the potential of self-supervised vision models
for real-time analysis and control in microscopy-based experiments.

DY 14.6 Mon 16:15 HUL/S186
Learning microstructure in active matter — eWRITU Das-
GUPTA, SUVENDU MANDAL, ARITRA MUKHOPADHYAY, and BENNO
LieBcHEN — Technische Universitat Darmstadt, Darmstadt, Germany

Understanding the full parameter dependence of microscopic structure
in active matter remains a central challenge, particularly for strong
activity and high density, where simulations become increasingly ex-
pensive. Here, we present a data-driven approach that learns radial
and angular correlations in terms of the pair-correlation function g(r,0)
of passive and active Brownian particles. Our predictions are in close
quantitative agreement with Brownian dynamics simulations, even for
parameter values that the neural networks had not previously encoun-
tered during training. Our predictions are subsequently distilled into
compact, closed-form expressions using symbolic regression, providing
an interpretable description of the underlying structure. Our approach
offers a unified and computationally efficient route to understanding
non-equilibrium correlations.

DY 14.7 Mon 16:30 HUL/S186
Physical embodiment enabled learning for autonomous navi-
gation of active particles in complex flow fields — eDIiPTABRATA
PauL!, NikoLa MiLosevic?, Nico ScHERF?, and FraNnk CicHos!
— 1Molecular Nanophotonics Group, Peter Debye Institute for Soft
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Matter Physics, Leipzig University, 04103 Leipzig, Germany — 2Max
Planck Institute for Human Cognitive and Brain Sciences, 04103
Leipzig, Germany

Autonomous navigation at the microscale is a major challenge in active
matter due to strong environmental noise and hydrodynamic distur-
bances. While living systems rely on sophisticated sensing and feed-
back to regulate functions from sub-cellular processes to chemotac-
tic navigation strategies, artificial microswimmers lack such adaptive
mechanisms and therefore struggle to respond effectively to stationary
or dynamic perturbations. In this work, we introduce an actor-critic
reinforcement learning (RL) framework and demonstrate that physical
embodiment alone enables adaptive navigation without explicit envi-
ronment sensing. Training of the active particle agent in strong and
spatially varying flow fields leads to emergence of robust strategies
that counteract hidden hydrodynamic perturbations excluded from
the agent’s observation space. This reveals that embodied dynamics
encode sufficient information for effective decision-making, enabling
RL to exploit morphology-environment coupling as an implicit sens-
ing channel. Our approach bridges the gap between simple stimulus
response schemes and higher-level adaptive behavior and establishes a
foundation for online learning, and microscale robotics.

15 min. break

DY 14.8 Mon 17:00 HUL/S186
Machine Learning for Electric-Field Driven Nuclear Dy-
namics in Solids and Liquids — eELia STocco!, CHRISTIAN
CARBOGNO?, and MARIANA Rossi! — 'MPI for the Structure and
Dynamics of Matter, Hamburg, Germany — 2Fritz Haber Institute of
the MPS, Berlin, Germany

Simulating the interaction of electric fields with matter is fundamental
to study dielectric properties and their interplay with structural and vi-
brational degrees of freedom. Therefore, it is desirable to obtain a gen-
eral method that is able to deal with static and time-dependent fields,
that is scalable to large complex systems, and that retains ab initio
accuracy. We describe a machine-learning molecular dynamics method
within the electric dipole approximation that describes the coupling of
insulating materials to diverse electric fields, spanning liquids, solids,
and confined systems [1]. In particular, we also take into account the
influence of the electric field on the lattice degrees of freedom. We train
equivariant MACE models [2], using density-functional theory data to
learn the potential energy and dipole surfaces, including the multi-
valued nature of the polarization in periodic systems. The external
forces on various degrees of freedom are obtained through automatic
differentiation. We present calculations of the dielectric permittivity
of water, the temperature and light-driven ferroelectric-paraelectric
phase transition of LiNbOj3, and simulations of piezoelectric systems.
[1] Stocco, E., Carbogno, C. Rossi, M., Npj Comput. Mater. 11, 304
(2025). [2] Batatia, I., et al., Adv. Neural Inf. Proc. Sys. 35, 11423
(2022).

DY 14.9 Mon 17:15 HUL/S186
Machine-learned Potentials for Vibrational Properties of
Acene-based Molecular Crystals — eSHUBHAM SHARMA, BURAK
GuURLEK, PaorLo Lazzaroni, and MArIANA Rosst — MPI for the
Structure and Dynamics of Matter, Hamburg, Germany

Machine-learning potentials (MLPs) have enabled efficient modelling
of complex atomistic systems with ab-initio accuracy. A major chal-
lenge, however, is the construction of sufficiently large and diverse
reference datasets using first-principles calculations. To mitigate this,
several active-learning strategies have been proposed to improve train-
ing efficiency, especially when combined with molecular-dynamics sam-
pling. In this work, we develop protocols for building training sets of
MACE potentials [1], targeting an accurate description of the vibra-
tional properties of weakly-bound condensed-phase systems [2]. We
assess the performance of MACE against the VASP-ML framework
[3], highlighting differences in predictive accuracy for energies, forces,
and vibrational properties. We also propagate committee-based un-
certainties to estimate errors in dynamical quantities coming from im-
perfect force predictions. Finally, we demonstrate the generalisation
capability of the acene-based potential by applying it to host-guest sys-
tems, enabling the identification of distinct vibrational modes within
the complex dynamical spectra. [1] I. Batatia et. al., Nat Mach Intell
7, 56-67 (2025); [2] B. Gurlek, S. Sharma et. al., npj Comput Mater
11, 318 (2025); [3] R. Jinnouchi et. al., PRB 100, 014105 (2019).

DY 14.10 Mon 17:30 HUL/S186
Spin-phonon systems in the age of modern atomistic sim-
ulations — eILja Srrakb2, MicuarL J. WiLLarT?, STUART C.
ArrHorpeE!, and ALt Avavil'2 — Yusuf Hamied Department of
Chemistry, University of Cambrige, Cambridge, United Kingdom —
2Max Planck Institute for Solid State Research, Stuttgart, Germany
Spin-phonon systems are molecules or crystals containing open-shell
atoms whose spin-spin interaction is significantly affected by lat-
tice displacements, sometimes leading to spin-Peierls phase transi-
tion. They typically inherit some of the most challenging aspects of
statistical physics where many configurations across the phase space
may contribute to its properties, and of “strongly-correlated” physics
where mean-field methods such as density functional theory and self-
consistent field approaches break down.

Over the years a plethora of Monte Carlo based techniques was de-
veloped to tackle this problem with some success, but not without
(sometimes significant) limitations. Approaching this problem from
atomistic simulations background, we developed a path integral molec-
ular dynamics framework which doesn’t require any Monte Carlo dur-
ing the simulation runtime to sample the phase space, it can take
arbitrary system parametrizations or even ab-initio description and
simulate the system at an arbitrary temperature as well as include nu-
clear quantum effect. Using neural networks we have developed this
framework further. We achieved a speed up of 2-3 orders of magnitude
and are able to treat higher dimensional systems.

DY 14.11 Mon 17:45 HUL/S186
Self-Consistent Benchmarking of Machine Learning Force
Fields via Energy-Landscape Exploration — eANAND
SuarMal2, Icor Porravskyl', and ALEXANDRE TKATCHENKO! —
IDepartment of Physics and Materials Science, University of Luxem-
bourg, Luxembourg — 2Indian Institute of Science Education and
Research Pune, India

The rapid growth of Machine Learning Force Field (MLFF) models
has prompted the development of diverse benchmarks to assess their
accuracy and transferability. Most existing approaches rely on pre-
defined test datasets, introducing biases and limiting fair comparison
between models.

We introduce a general, system- and model-agnostic benchmarking
framework that evaluates MLFFs through self-generated datasets. For
each model, molecular structures are obtained by sampling random
initial configurations of atoms and relaxing them using the model’s
predicted forces. The resulting datasets are analyzed through (i) com-
parison with the model’s original training data, (ii) validation against
ab-initio reference calculations, and (iii) cross-model dataset compar-
ison. Applied to the SO3LR [1] and MACE-MP-0 [2] models, our
framework identifies gaps in their training set coverage and enables
unbiased evaluation of models’ predictive capabilities. Overall, our
approach provides a consistent, extensible foundation for comparing
and improving next-generation broadly applicable MLFFs.

[1] A. Kabylda, et. al, J. Am. Chem. Soc. 147, 33723 (2025).

[2] I. Batatia, et. al, J. Chem. Phys. 163, 184110 (2025).

DY 14.12 Mon 18:00 HUL/S186
Solving Classical and Quantum spin glasses with Deep Boltz-
man Quantum States — Luca LeonNe!, eArRkA DurTal, MARKUS
Hevr!, Enrico Prari?, and PieTrRo Torta? — !Theoretical
Physics III, Center for Electronic Correlations and Magnetism, In-
stitute of Physics, University of Augsburg, Augsburg, Germany. —

2Department of Physics, University of Milan, Milan, Italy.

Variational neural network models achieved remarkable success in
preparing the ground state of quantum many-body systems. However,
addressing classical and quantum spin glasses remains challenging, as
exponential growth of deep local energy minima due to disorder and en-
ergy frustration hinder conventional Monte Carlo methods. To bridge
this gap, we introduce Deep Boltzmann Quantum States, a class of
neural quantum states inspired by deep Boltzmann machines, trained
by devising Neural Quantum Annealing, an algorithm incorporating
the principles of quantum annealing. It solves large-scale classical and
quantum spin glasses, matching the exact solution or the best available
estimate for several instances of Ising spin-glass models with infinite-
range interactions and hundreds of spins.

DY 14.13 Mon 18:15 HUL/S186
Optimization and Representability of time-dependent Neu-
ral Quantum States: a study of the 1D critical quantum
Ising model — eWrLaDISLAW KRINITSIN''2, MoOHAMMAD ABEDI}Z,
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Jonas Rico?, and Markus Scamrrt!?2 — 1PGI-8, Forschungszen-
trum Jiilich, Jiilich, Germany — 2Faculty for Informatics and Data
Science, Regensburg University, Germany

In recent years, neural quantum states have emerged as a competitive
and powerful numerical approach for many body systems. While they
provide a flexible and scalable ansatz, able to represent any state as
suggested by the function-approximation theorem, their practical lim-

itations are still opaque, in particular regarding representability and
optimization. In this work we investigate these questions within the
framework of variational Monte Carlo on the example of the time evo-
lution of the critical transverse-field Ising model in one dimension.
Even for moderate system sizes, the departure from the exact solution
occurs very early in the dynamics, allowing us to systematically ana-
lyze the representability of the state at each time step as well as the
impact of different sampling strategies.



