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DY 6: Machine Learning in Dynamics and Statistical Physics |

Time: Monday 9:30-13:00

DY 6.1 Mon 9:30 HUL/S186
Reservoir Computing with Hydrodynamically Coupled Ac-
tive Colloidal Oscillators — eVErT-Lorenz HeuTHE!, Lukas
SEEMANNY, SamueL Tovey?, and CLEMENS BEcHINGERD3
LUniversitiat Konstanz, Konstanz, Germany — 2Universitéit Stuttgart,
Stuttgart, Germany — 3Centre for the Advanced Study of Collective

Behavior, Konstanz, Germany

Reservoir computing is a newly emerging framework that exploites the
dynamical response of complex physical systems to external perturba-
tions. The high-dimensional, non-linear dynamics of active matter sys-
tems with hydrodynamic interactions offsers great potential for highly
tunable physical reservoirs. Here, we present a physical reservoir that
exploits the hydrodynamic interactions between several hundred col-
loidal oscillators for chaotic timeseries forecasting. We demonstrate
that the inherent memory in this system facilitates detection of hid-
den anomalies in non-Markovian time-signals. Our results highlight
the potential of active matter for locating subtle, non-disruptive sig-
natures in e.g. financial stock markets, physiological measurements or
seismic and climate data. Achieving such computing functinalities in
physical systems could enable the development of intelligent hardware
for edge-computing.

DY 6.2 Mon 9:45 HUL/S186
From Phase-Space Fluctuations to Predictive Power: En-
tropy Production as a Metric for Swarm Reservoir Com-
puting — eParrick EceENLAUFY? and Miriam KropoTek!3
IUniversity of Stuttgart, Stuttgart Center for Simulation Science,
SimTech Cluster of Excellence EXC 2075, Stuttgart, Germany —
2University of Stuttgart, Interchange Forum for Reflecting on Intelli-
gent Systems, IRIS3D, Stuttgart, Germany — SHeidelberger Akademie
der Wissenschaften, WIN-Kolleg, Heidelberg, Germany

In reservoir computing, a time-varying input is projected onto a
high-dimensional state space, allowing a simple linear readout to re-
trieve task-relevant features. Physical substrates such as active-matter
swarms promise efficient, low-energy computation, but a quantitative
selection criterion, that reliably indicates a good reservoir, is missing.
We simulated an interacting swarm subjected to an external driver and
evaluated two entropy measures: system entropy, quantifying phase-
space density fluctuations, and environment entropy, representing heat
dissipation. For each parameter set of the swarm interactions, we com-
puted the relative differences for the system and environment entropy
between undriven and driven cases and measured the driver work per-
formed on the system. Both relative differences display robust linear
correlations with forecast accuracy, while the driver work matches the
performance curve almost perfectly, indicating that driver-induced en-
tropy production dominates the reservoir’s information-processing ca-
pacity. Consequently, entropy production offers a quantitative metric
for tuning swarm-based reservoirs toward optimal performance.

DY 6.3 Mon 10:00 HUL/S186
Performing inference with physical response: Reservoir com-
puting with active matter substrates — Mario U. Gammann!
and eMiriaM KropoTek!:2 — lUniversity of Stuttgart, Stuttgart
Center for Simulation Science, SimTech Cluster of Excellence EXC
2075, Stuttgart, Germany — 2WIN-Kolleg of the Young Academy, Hei-
delberg Academy of Sciences and Humanities, Heidelberg, Germany

We explore questions of real-time inference and forecasting of chaotic
signals, re-interpreting them in terms of nonequilibrium physical re-
sponse, by studying a model of information processing with an active
matter substrate used in the reservoir computing (RC) paradigm.
The system becomes robustly optimal for computing in a particular
dynamical regime due to its intrinsic ability to relax efficiently, which,
under driving, unlocks maximal dynamical diversity and susceptibility
to chaotic input signals; the mechanisms include self-healing, multi-
step dynamical response, and adaptive morphological reorganization
[1,2]. Shifting the system’s response away from direct-agent toward
collective variables is key, as evidenced by cross-correlative functions
in dynamics [2]. These ideas shed light on self-optimizing inference
in bio-inspired or material computing that flexibly exploits dynamics
across diverse collective scales.

[1] M. U. Gaimann and M. Klopotek, arXiv:2505.05420 (2025).

[2] M. U. Gaimann and M. Klopotek, arXiv:2509.01799 (2025).

Location: HUL/S186

DY 6.4 Mon 10:15 HUL/S186
Learning single and multiple chaotic systems with minimal
reservoir computers — eFRrRaNCEsco MaRrriNuzzl and HOLGER
KanTz — Max Planck Institute for the Physics of Complex Systems

Chaotic dynamics are present in a multitude of natural and engineered
systems. Recently, chaos has been modeled using machine learning
(ML) methods thanks to their ability to infer underlying governing
equations without directly accessing them. Among ML models, echo
state networks (ESNs) have been widely investigated because of their
simple construction and efficient training. However, ESNs typically
rely on randomly initialized reservoirs whose stochastic connectivity
makes them difficult to interpret and tune. To what extent are ran-
dom and complex reservoir topologies actually necessary for learning
chaotic dynamics with ESNs? We show that deterministic construc-
tions of the reservoir matrix outperform random initializations for the
reconstruction of chaotic attractors. By testing ten distinct determinis-
tic topologies against random reservoirs on over 90 different attractors,
our results demonstrate consistently better performance for determin-
istic reservoirs. Furthermore, we show how the same deterministic
reservoir topologies can be leveraged to learn multiple chaotic systems
with a single reservoir computer, thereby showcasing multifunctional-

1ty.

DY 6.5 Mon 10:30 HUL/S186
Understanding task performance of time-multiplexed opti-
cal reservoir computing via polynomial expansion — eELiAs
Kocu!, JuLiEN JavaLoves?, SveETLANA V. GuUREVICHD3, and
Lina JauriGuE* — llInstitute for Theoretical Physics, Univer-
sity of Minster, Wilhelm-Klemm-Str.9 48149 Miinster, Germany —
2Departament de Fisica and IAC3, Universitat de les Illes Balears,
Campus UIB 07122 Mallorca, Spain — 3Center for Data Science and
Complexity (CDSC), University of Minster, Corrensstrasse 2, Miin-
ster, 48149, Germany — *Institute of Physics, Technische Universitét
Ilmenau , 98693 Ilmenau, Germany

We study the dynamics of a reservoir computer, realized as a linear op-
tical microcavity with a time-multiplexed injection stream. In the first
step, the output is processed with different nonlinearities, allowing to
analyze the resulting polynomials and to what extend they can approx-
imate different tasks. To that end, we compare two different discrete
tasks, both derived from the Lorenz system through integration with
a Runge-Kutta (4) scheme, but sampled to different stepsizes. There,
we identify the respective underlying polynomial map and discuss the
occuring terms. We compare these results with the impact of employ-
ing nonlinear nodes by introducing a Kerr nonlinearity in the optical
microcavity.

DY 6.6 Mon 10:45 HUL/S186
Physical Reservoir Computing with Ferroelectric Oxides for
Time-series Classification Tasks — e ATREYA MaAJUMDAR!, YAN
MEeNG CHong?2, DENNis MEIERDZ3, and KARIN EVERSCHOR-SITTE!
— 1Faculty of Physics and Center for Nanointegration Duisburg-
Essen (CENIDE), University of Duisburg-Essen, Duisburg, Germany
— 2Department of Materials Science and Engineering, Norwegian Uni-
versity of Science and Technology (NTNU), Trondheim, Norway —
3Research Center Future Energy Materials and Systems, Research Al-
liance Ruhr, Bochum, Germany.

Physical reservoir computing leverages the intrinsic complexity, non-
linearity, and fading memory of material systems to process tempo-
ral data for solving time-series pattern recognition tasks. Magnetic
and ferroelectric materials have recently emerged as promising reser-
voir computers, offering dynamics well suited for processing time-
dependent signals [1]. Here, we demonstrate that the photocurrent
dynamics of the ferroelectric semiconductor ErMnO3 can be harnessed
as an effective physical reservoir for real-time time-series classification.
Moreover, the relaxation time of the photocurrent can be controllably
tuned, providing flexibility to capture different temporal features and
thereby enhancing performance. Altogether, the results highlight the
potential of ferroelectric oxides as scalable, energy-efficient platforms
for real-time physical reservoir computing.

[1] K. Everschor-Sitte, et al., Topological magnetic and ferroelectric
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systems for reservoir computing. Nat. Rev. Phys. 6, 455 (2024).

15 min. break

DY 6.7 Mon 11:15 HUL/S186
Checking the superiority of multi-model mean forecasts
by reservoir computing — DanieL EsTeEvez Moval:3, Erick
A. MapricaL Sorish2, ErnesTo EsTevEz Rams®, and eHOLGER
KanTz! — 'Max Planck Institute for the Physics of Complex Systems,
Dresden, Germany — 2University of Techology, Dresden, Germany —
3Faculdad de Fisica, Universidad de La Habana, Cuba

In weather prediction and climate forecasts it has been observed that
taking the arithmetic mean forecast of an ensemble of different models
is often superior to most of the individual models. We use Reservoir
Computing to generate easily a large ensemble of models and study
their performance on deterministic toy models. While each individu-
ally trained reservoir comes with its own model error which is a sys-
tematic error, we verify that the arithmetic mean of these forecasts is
closer to the truth than most of the individual forecasts. We present
a detailed dynamical explanation for this observation.

DY 6.8 Mon 11:30 HUL/S186
Controlling dynamical systems into unseen target states
using machine learning — DaNiEL K6cLMAYR!'2, ALEXANDER
HavLuszczyNskI®, and eCHRIsToPH RATHD'2 — lDeutsches Zentrum
fiir Luft- und Raumfahrt (DLR) — 2Ludwig-Maximilians-Universit#t
(LMU) — 3Allianz Global Investors (AGI)

Controlling nonlinear dynamical systems is a central task in many dif-
ferent areas of science and engineering. Combining previous work on
controlling chaotic systems to arbitrary states [1] and extrapolating the
system behavior into unseen parameter regions [2] using machine learn-
ing, we present here a novel, model-free, and data-driven methodology
for controlling complex dynamical systems into previously unseen tar-
get states, including those with significantly different and complex dy-
namics. Leveraging a parameter-aware realization of next-generation
reservoir computing (NGRC), our approach accurately predicts sys-
tem behavior in unobserved parameter regimes, enabling control over
transitions to arbitrary target states utilizing a new prediction eval-
uation and selection scheme [3]. By extending the applicability of
machine learning-based control mechanisms to previously inaccessible
target dynamics, this methodology opens the door to transformative
new applications while maintaining exceptional efficiency. Our results
highlight reservoir computing as a powerful alternative to traditional
methods for dynamic system control.

[1] A. Haluszczynski & C. Réath, Sci Rep 11, 12991 (2021),
[2] D. Koglmayr & C. Réth, Sci Rep 14, 507 (2024),
[3] D. Koglmayr, A. Haluszczynski & C. Ré&th, submitted
(https://arxiv.org/abs/2412.10251)

DY 6.9 Mon 11:45 HUL/S186
Noise-Balanced Sparse Grid Surrogates for Multiscale Cou-
pling of Monte Carlo and Continuum Models — eToBIAS
HULsER and SEBASTIAN MATERA — Fritz-Haber-Institut der MPG,
Berlin

Incorporating a high-fidelity microscopic Monte Carlo model into mul-
tiscale simulations can easily become intractable, implying the neces-
sity of surrogate models in many practical applications. Unfortunately,
if the microscopic model depends on many macro-variables this can be-
come quite challenging due to the ’curse of dimensionality’. Further-
more, the sampling noise in the underlying Monte Carlo data can lead
to uncontrolled errors corrupting the surrogate even though it would
be highly accurate in the case of noise-free data. To address these
points, we have developed a novel sparse grids interpolation approach
which balances interpolation and noise induced errors complemented
by a multilevel on-the-fly construction during the multi-scale simu-
lation. Besides its efficiency, an appealing feature is the ease of use
of the approach with a single hyperparameter controlling the whole
surrogate construction - from which data needs to be created (and
how accurately) to the surrogate’s accuracy with guaranteed conver-
gence. We demonstrate the approach on examples from heterogenous
catalysis, incorporating microscopic kinetic Monte Carlo models into
convection-diffusion type reactor scale simulations.

DY 6.10 Mon 12:00 HUL/S186

Learning Time Trajectories of a Stochastic Dynamical Sys-
tem with a Slowly Varying Parameter — eCnangno Kim!, Z1-

HAN XU'l, ANDREwW Nonaka?, and YUANRAN ZuU? — !University of
California, Merced, California, USA — 2Lawrence Berkeley National
Laboratory, Berkeley, California, USA

The statistics-informed neural network (SINN) is a reliable machine
learning approach for learning and reproducing stochastic trajectories
based on the statistical properties of sample trajectory data, partic-
ularly for stationary, Gaussian-like, multidimensional stochastic pro-
cesses. However, to enable practical applications—such as surrogate
modeling for the development of hybrid simulation methods—SINN
must be extended to learn quasi-stationary dynamics driven by a slowly
varying parameter. We enhance the SINN framework by incorporating
this parameter as an additional input and by introducing loss functions
to capture its influence, as well as proposing a new neural network
structure that takes both white noise sequences and time trajectories
of the slowly varying parameter as inputs. Additionally, we propose
an alternative method for estimating a conditional probability density
function to address computational constraints. We validate our ap-
proach through two benchmark problems: the dissociative adsorption
problem and Langevin dynamics in an oscillating double-well potential.

DY 6.11 Mon 12:15 HUL/S186
Learning spatiotemporal patterns from mean-field data —
eEpMILsON RoQUE pos Santos! and Tiaco Pereira2 — 1MPI-
PKS,Germany — 2University of Sdo Paulo, Brazil

Networks of coupled dynamical systems are fundamental models across
the sciences, from physics to neuroscience. Despite their success, the
governing equations of such systems are often unknown, limiting our
ability to predict and control their dynamics. A major current effort
is to learn these governing equations directly from data. However, ex-
isting approaches typically require access to the time series of all node
states, which is rarely available outside controlled experiments. In
most realistic scenarios, only aggregate or mean-field data, such as lin-
ear combinations of node states, can be measured. In this case, learn-
ing the governing equations from mean-field data inevitably becomes
a secondary goal, since one must first learn the network trajectory
that generated the observed measurements. This task is inherently
challenging because distinct network states can yield identical macro-
scopic observations. Here, we address the problem of learning the
network trajectory from random mean-field measurements. We show
that accurate reconstruction becomes possible when the network ex-
hibits structured spatiotemporal patterns, such as traveling waves. By
representing these patterns sparsely in the Fourier domain, we leverage
compressive sensing theory to formulate a convex optimization prob-
lem that robustly reconstructs the network trajectory. We illustrate
our findings using a unidirectional ring of coupled Stuart-Landau os-
cillators.

DY 6.12 Mon 12:30 HUL/S186
Discovering Mechanisms and Governing Laws with Sparse
Regression — eGianMarco Ducci, MArRYKE Kouvate, Juan
MANUEL LoMBARDI, ARTEM SAMTSEVYCH, KARSTEN REUTER, and
CHRISTOPH SCHEURER — FHI Berlin

Interpretable data-driven methods have proven viable for deriving com-
plex vector fields directly from experimental data. Their inherent dif-
ferential formulation, however, make them vulnerable to noise, which
can compromise the sparsity of the inferred models. In order to pro-
mote sparsity, a weak formulation can be employed. Then, finding
the optimal set of basis functions is a necessary prerequisite, yet a
challenging task to determine in advance.

We present the release version of the Data-Driven Model Optimizer
ddmo, a symbolic regression tool which provides fine-grained control
over the admissible space of candidate terms. Its core contribution lies
in the systematic optimization of the library of functions, implemented
through two complementary engines: a standard SINDy-based differ-
ential formulation and a weak-form variant. Its modular structure fur-
ther enables the optimization of test functions within the weak formu-
lation. An overview of the software capabilities is provided, alongside
with a case study illustrating the reconstruction of effective kinetics
from experimental reactor data.

DY 6.13 Mon 12:45 HUL/S186
POD-Subspace Reconstruction of Convective Reversal Dy-
namics from Limited Sensor Data — eTim KrorLL and OLIVER
Kamps — CDSC ,University of Miinster

We introduce a data-driven modelling framework that leverages a hy-
brid LSTM-neural-network architecture to capture convection rever-
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sals from limited time-series measurements.. The method operates
entirely in POD space, enabling efficient and accurate reconstruction
of complex dynamical systems from limited observations by modelling
non-orthogonal modes as a superposition of POD modes. The corre-
sponding dynamics are modelled by an LSTM, incorporating knowl-
edge about the history of the timeseries. We demonstrate its effective-

ness on convection processes, showing that measurements from a single
sensor - of either temperature T or velocity V - are sufficient to recover
the full spatiotemporal dynamics, consisting of temperature, velocity
or a combination of both, within the reduced representation. Further-
more this approach has potential to be applied in different scientific
fields detached from convection or fluid dynamics.



