

FM 15: Nanoscale Probing of Functional Properties

chair: Jiali He (Norwegian University of Science and Technology, Norway)

Time: Wednesday 15:00–15:45

Location: BEY/0E40

FM 15.1 Wed 15:00 BEY/0E40

Nanoscale Phonon Dynamics Studied In-Situ by Laser Stimulated Vibrational Electron Energy-Gain Spectroscopy — •MAIRI McCUALEY^{1,2}, JOEL MARTIS³, ONDREJ KRIVANEK³, BEN PLOTKIN-SWING³, TOLGA WAGNER^{1,2}, HÜSEYİN ÇELİK^{1,4}, GRIGORY KORNILOV¹, KATRINA COOGAN^{1,2}, MENG ZHAO^{1,2}, ANDREAS MITTELBERGER³, MATTHIAS MEFFERT⁵, LUCA PIAZZA⁵, TRACY LOVEJOY³, GUILLAUME RADTKE⁶, CHRISTOPH KOCH^{1,2}, and BENEDIKT HAAS^{1,2} — ¹Department of Physics, Humboldt-Universität zu Berlin, Berlin, Germany — ²Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin, Germany — ³Bruker AXS LLC, Kirkland, WA, USA — ⁴Institute for Physics and Astronomy, Technische Universität Berlin, Berlin, Germany — ⁵DECTRIS AG, Baden-Daettwil, Switzerland — ⁶Sorbonne Université, CNRS UMR 7590, MNHN, IMPMC, Paris, France

Advances in instrumentation allow to directly probe phonon dispersions at the nanoscale using electron energy gain and loss spectroscopy (EEGS/EELS) within a scanning transmission electron microscope (STEM). By integrating a laser injection system, we enable the investigation of stimulated phonons at the spatial resolution determined by the electron beam. A synchronised laser-detector configuration enables nanosecond-scale time-resolved measurements. The thermal conductivity of amorphous carbon and silicon nitride was investigated by local time-resolved temperature measurements and is compared to numerical simulations. Ongoing work applies the system to study phonon transport through defects and interfaces at atomic resolution.

FM 15.2 Wed 15:15 BEY/0E40

Photoluminescence Spectroscopy of Platinum (II) and Palladium (II) Dimers in Organic Molecular Single Crystals Under Pressure — PAUL STEEGER¹, TOBIAS THEISS², DOMINIK SCHWAB³, IVAN MAISULS², •VEDHANTH SENTHIAPPAN VELLAJAPPAN UTHAYASURIAN¹, ROBERT SCHMIDT¹, ILYA KUPENKO⁴, CARMEN SANCHEZ VALLE⁴, STEFFEN MICHAELIS DE VASCONCELLOS¹, NIKOS L. DOLTSINIS³, CRISTIAN A. STRASSERT², and RUDOLF BRATSCHITSCH¹ — ¹Institute of Physics, University of Münster — ²Institut für Anorganische und Analytische Chemie, University of Münster — ³Institute of Solid State Theory, University of Münster — ⁴Institute of Mineralogy, University of Münster

Cyclometalated transition-metal complexes are promising for applica-

tions ranging from bioimaging to light-emitting diodes. We investigate two tailored biscyclometalated Pd(II) and Pt(II) complexes, which feature ligands that promote head-to-tail dimer formation to enable interactions between their metal centers [1]. We prepare molecular single crystals and apply hydrostatic pressure with a diamond anvil cell in the GPa range [2]. The photoluminescence shows a prominent redshift under pressure. Density functional theory calculations link this effect to a reduced metal-metal distance. Importantly, the observed mechanochromism is reversible, which holds the promise for pressure sensing and optical storage applications. References: [1] T. Theiss et al., *J. Am. Chem. Soc.* 145, 3937 (2023), [2] P. Steege et al., *Nano Lett.* 25, 2628 (2025)

FM 15.3 Wed 15:30 BEY/0E40

A novel Approach to parametrize a ferroelectric Phase-Field Model from atomistic Simulation Data — •FRANK WENDLER¹, DILSHOD DURDIEV², XUEJIAN WANG¹, HIKARU AZUMA³, TAKAHIRO TSUZUKI³, TOMOHIRO OGAWA³, RYO KOBAYASHI³, MASAYUKI Uraganase⁴, SHUJI OGATA³, and MICHAEL ZAISER¹ — ¹Institute of Materials Simulation, FAU Erlangen-Nürnberg, Dr.-Mack-Str. 77, 90762 Fürth, Germany — ²Division Mechanics of Functional Materials, TU Darmstadt, Germany — ³Physical Science and Engineering Department, Nagoya Institute of Technology, Japan — ⁴RIKEN Center for Biosystems Dynamics Research, Japan

Based on molecular dynamics simulations using a core-shell potential for polarization switching in ferroelectric BaTiO₃ (BTO) with and without vacancy defects, a parametrization framework for phase-field simulations is established. Crucial material properties such as elastic and piezoelectric tensor components, kinetic coefficients, as well as domain wall characteristics are extracted from the MD results to adjust the anisotropic gradient energy. The 6th order Landau polynomial coefficients are derived from statistical analysis of polarization switching data, including the activation parameters for BTO that govern domain nucleation. The proposed energy landscape favours polarization switching in two subsequent 90° steps over 180° switching, which was observed experimentally and in recent MD simulations. The method is important for phase-field simulations of domain nucleation and domain wall motion in presence of point defects carrying mono- or dipolar electric fields as well as elastic strain fields.