

HL 57: Nitrides IV – Optical properties

Time: Friday 11:30–12:45

Location: POT/0051

HL 57.1 Fri 11:30 POT/0051

Optical Properties of Sn-doped n-type GaN — •HANNAH BENDIN¹, ELIAS KLUTH¹, KAZUKI OHNISHI², KAN SUKE HAMASAKI², SHUGO NITTA², NAOKI FUJIMOTO², HIROTAKA WATANABE², YOSHIO HONDA², HIROSHI AMANO², RÜDIGER GOLDAHAN¹, and MARTIN FENEBERG¹ — ¹Otto-von-Guericke-Universität Magdeburg, Germany — ²Nagoya University, Japan

GaN is at the heart of many contemporary electronic and optoelectronic applications. To increase the efficiency of high-power devices, the preparation of degenerately doped n-type GaN of high quality is required. Generally, Si and Ge are introduced as dopants, each giving rise to their own challenges. For example, high Si-doping is counteracted by carrier compensation and an increase in tensile stress. Recently, Sn has also gained interest as a dopant in GaN. Initial theoretical and experimental studies show promising results, introducing Sn as a candidate for strain control in n-type GaN via co-doping with Si or Ge, as the radius mismatch between Ga and Sn causes compressive strain, unlike Si or Ge. Here, we investigate Sn-doped samples with different carrier concentrations grown by halide vapor phase epitaxy by employing a variety of optical techniques. To determine the influence of the carrier concentration in GaN:Sn on the optical properties, we apply spectroscopic ellipsometry, Raman spectroscopy, and photoluminescence. Two sets of samples have been investigated: (I) GaN:Sn on a GaN/sapphire template and (II) GaN:Sn on a freestanding GaN substrate.

HL 57.2 Fri 11:45 POT/0051

Optical properties of ScAlN: investigation by spectroscopic ellipsometry — •CHRISTINA HARMS¹, JONA GRÜMBEL¹, DUC V. DINH², ZHUOHUI CHEN³, OLIVER BRANDT², MARTIN FENEBERG¹, and RÜDIGER GOLDAHAN¹ — ¹Otto-von-Guericke-Universität, Institut für Physik, Magdeburg, Germany — ²Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Berlin, Germany — ³Huawei Technologies Canada Co., Ltd., Kanata, Canada

$\text{Sc}_x\text{Al}_{1-x}\text{N}$ alloys are of increasing interest due to their unique ferroelectric and optoelectronic properties. In this work, we investigate the dielectric function of this material using spectroscopic ellipsometry. A series of $\text{Sc}_x\text{Al}_{1-x}\text{N}$ samples with $0 \leq x \leq 0.35$, grown on AlN/Si by plasma-assisted molecular beam epitaxy, were measured in the infrared (IR) and ultraviolet (UV) spectral range. In the IR range, the $\text{E}_1(\text{TO})$ phonon mode is characterized in terms of its resonance frequency ω and broadening γ , which are analyzed as a function of Sc content. Additionally, the dielectric limit ε_∞ is derived. With increasing Sc content, ω decreases, while both γ and ε_∞ increase. In the UV range, we determine the optical bandgap E_g as well as the corresponding ε_∞ and describe the observed trends across the composition range. Here, E_g decreases systematically with increasing Sc content and ε_∞ increases accordingly. The results are compared with recent results from literature, showing consistent trends in the optical properties throughout the investigated composition range.

HL 57.3 Fri 12:00 POT/0051

Near-lattice-matched AlScN/GaN heterostructures studied by spectroscopic ellipsometry and photoluminescence — •ALWIN WÜTHRICH¹, RAJENDRA KUMAR², OANA MALIS², RÜDIGER GOLDAHAN¹, and MARTIN FENEBERG¹ — ¹Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Germany — ²Department of

Physics and Astronomy, Purdue University, USA

Understanding the fundamental properties of the novel ferroelectric material AlScN, such as ferroelectricity, tunable lattice constants, a wide and tunable band gap, and high piezoelectric coefficients, is crucial for its correct implementation in modern applications. Examples include processing units based on non-volatile memory and the design of infrared devices that utilize transitions between strongly confined electronic states, i.e., intersubband transitions. Here, near-lattice-matched AlScN layers (with 4–25% Sc) were grown by molecular beam epitaxy (MBE) on MBE-grown GaN layers. The samples were investigated by spectroscopic ellipsometry from the near-infrared to the far-ultraviolet range, probing infrared-active phonons and interband transitions. Additionally, the samples were studied by temperature-dependent photoluminescence, revealing luminescence from a two-dimensional electron gas.

HL 57.4 Fri 12:15 POT/0051

Near-Infrared Photocurrent Spectroscopy of InN Two-Terminal Devices — •ALEXANDRA V. NEMMAIER^{1,2}, MAXIMILIAN A. GRUBER^{1,2}, ABHILASH ULHE^{1,2}, GREGOR KOBLMÜLLER^{1,2}, and ALEXANDER W. HOLLEITNER^{1,2} — ¹Walter Schottky Institute, TU Munich, Germany — ²Exzellenzcluster e-conversion, Munich, Germany

The semiconductor InN, with its narrow bandgap, high electron mobility, and specific carrier cooling mechanisms, is a promising platform for optoelectronics and hot carrier solar cells. We investigate epitaxial InN layers grown on GaN by near-infrared photocurrent spectroscopy. We measure the spatially resolved photocurrent to characterize the photoresponse in gated two-terminal devices. This approach offers a new perspective on hot carrier generation, charge carrier transport, and relaxation mechanisms close to the bandgap of the material.

HL 57.5 Fri 12:30 POT/0051

Structural and vibrational properties of strain-free $\text{Al}_{1-x}\text{Sc}_x\text{N}$ nanowires — ADRIANO NOTARANGELO¹, ILEANA FLOREA², PHILIPPE VENNÉGUÉS², AIDAN CAMPBELL¹, HANS TORNATZKY¹, JONAS LÄHNEMANN¹, THOMAS AUZELLE¹, LUTZ GEELHAAR¹, OLIVER BRANDT¹, and •PHILIPP JOHN¹ — ¹Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V. 10117 Berlin, Germany — ²Université Côte d'Azur, CRHEA, CNRS, 06905 Sophia-Antipolis Cedex, France

The incorporation of Sc into the wurtzite crystal lattice of AlN enhances its piezoelectricity and induces ferroelectricity, making $\text{Al}_{1-x}\text{Sc}_x\text{N}$ an attractive material for novel types of group-III nitride based devices. Yet, the lattice distortions giving rise to these functionalities are superimposed to distortions arising from residual strain introduced during the heteroepitaxy on lattice-mismatched substrates.

In this work, self-assembled wurtzite $\text{Al}_{1-x}\text{Sc}_x\text{N}$ nanowires are grown by molecular beam epitaxy, varying the Sc content x from 0 to 0.38. The nanowire geometry allows elastic relaxation to occur, resulting in strain-free, bulk-like $\text{Al}_{1-x}\text{Sc}_x\text{N}$. A non-linear evolution of lattice parameters and a continuous red-shift of the E_2^{high} and $\text{A}_1(\text{TO})$ phonon modes as a function of Sc content are found, confirming its incorporation into the wurtzite lattice and revealing modifications of anion-cation bond strength and coordination environment.

Our results highlight the advantages of bulk-like $\text{Al}_{1-x}\text{Sc}_x\text{N}$ for probing its fundamental properties, laying the ground work for further device applications.