

MA 27: Ultrafast Magnetization Effects I

Time: Wednesday 9:30–12:45

Location: HSZ/0004

Invited Talk

MA 27.1 Wed 9:30 HSZ/0004

Towards sub-10fs magnetization switching — REZA ROUZEGAR¹, OLIVER FRANKE¹, GAL LEMUT¹, OLIVER GUECKSTOCK¹, JUNWEI TONG¹, DIETER ENGEL², XIANMIN ZHANG³, GEORG WOLTERSDORF⁴, PIET W. BROUWER¹, TOBIAS KAMPFRATH¹, and •QUENTIN REMY¹ — ¹Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany — ²Max-Born-Institut für nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany — ³Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China — ⁴Institut für Physik, Martin-Luther-Universität Halle, 06120 Halle, Germany

Femtosecond laser pulses can induce sub-picosecond demagnetization, enabling ultrafast magnetic writing, spin transport, and broadband THz generation. Yet the microscopic processes in the first ~ 10 fs remain poorly understood. Three-temperature models describe energy flow among electrons, spins, and the lattice but neglect angular-momentum transfer, essential for spin dissipation.

Using ultrabroadband THz emission spectroscopy with ~ 10 fs resolution, we find that electron-magnon (em) scattering drives the nonequilibrium spin dynamics, generating both spin flips and magnons in under 10 fs, well before ~ 100 fs demagnetization. Angular momentum is then dissipated primarily through magnon-lattice interactions. Having established em scattering as the dominant sub-10-fs mechanism, we show that THz pulses can harness this coupling to reverse magnetization, pointing to sub-10-fs spin control.

MA 27.2 Wed 10:00 HSZ/0004

Ultrafast Control of Spin Periodicity in a Helical Heisenberg Antiferromagnet — •HYEIN JUNG^{1,2}, ABEER ARORA², DEEKSHA GUPTA³, FRANZISKA WALTHER⁴, KRISTIN KLEIMT⁴, VICTORIA C. A. TAYLOR², TÚLIO DE CASTRO², HANQIAN LU^{1,2}, CHRISTIAN SCHÜSSLER-LANGEHEINE³, NIKO PONTIUS³, URS STAUB⁵, CORNELIUS KRELLNER⁴, LAURENZ RETTIG², RALPH ERNSTORFER^{1,2}, and YOAV W. WINDSOR^{1,2} — ¹Technische Universität Berlin, Berlin, Germany — ²Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany — ³Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany — ⁴Goethe-Universität Frankfurt, Frankfurt, Germany — ⁵Paul Scherrer Institut, Villigen, Switzerland

The ultrafast manipulation of spin structures is a promising route toward the next generation spintronic devices. In this work, we study the helical Heisenberg antiferromagnet EuCo₂P₂ using resonant soft X-ray diffraction (RXD). By probing the magnetic Bragg reflections, we are experimentally sensitive both to the antiferromagnetic (AF) order parameter and to the 4f spin periodicity. We measure their response under three distinct perturbations: (a) femtosecond laser excitation (ultrafast RXD), (b) external magnetic fields, and (c) temperature variation. Employing a Heisenberg model, we directly reveal how the observables respond to each of the perturbations we apply. We further probe the response of the crystal lattice under the same conditions as the spin order and draw a relation between the dynamics of the two. These results offer insight into different routes to control AF spin order and its couplings.

MA 27.3 Wed 10:15 HSZ/0004

Time-resolved coherent small-angle EUV scattering of magnetic thin film structures — •KONSTANZE KORELL¹, SERGEY ZAYKO¹, HUNG-TZU CHANG¹, TIMO SCHMIDT², MURAT SIVIS^{1,3}, MANFRED ALBRECHT², and CLAUS ROPERS^{1,3} — ¹Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany — ²Experimental Physics IV, University of Augsburg, Germany — ³4th Physical Institute - Solids and Nanostructures, University of Göttingen, Germany

Laser excitation yields control over magnetic structures on the femtosecond timescale, yet the corresponding nanoscale response remains difficult to access. Ultrafast coherent diffractive imaging has recently provided real-space insights [1], limited, however, to reversible dynamics. Here, by carrying out coherent speckle diffraction, we combine the strengths of diffraction with the coherence of a source capable of coherent imaging. Through this, we get insights to reversible and irreversible processes. Using a femtosecond high harmonic generation source, we measure pump-probe scattering from magnetic thin films

in a laboratory-based setup. We discuss both the opportunities and limitations of this approach providing a basis for the interpretation of nanoscale magnetic dynamics in future ultrafast experiments.

[1] H.-T. Chang et. al, arXiv:2504.17917 (2025)

MA 27.4 Wed 10:30 HSZ/0004

Exploitation of Spin Wave Resonances in Miniaturized Magnetic Electron Optics for Ultrafast Electron Beam Manipulation — •MAX HERZOG¹, JOHANNES SCHULTZ¹, and AXEL LUBK^{1,2} — ¹IFF, IFW Dresden, Helmholtzstraße 20, 01069 Dresden — ²IFMP, TU Dresden, Haeckelstraße 3, 01069 Dresden

Magnetic electron optics that can be switched on sub-nanosecond time scales are useful for the setup of stroboscopic measurements in scanning and transmission electron microscopes. Scaling laws indicate that devices become permeable for alternating magnetic fields with GHz frequency by miniaturizing them to micrometer length scales, therefore decreasing their induction. On these length scales, spin waves can be excited in the magnetic pole pieces which can drastically increase the micro optics effectiveness when their resonance condition is met. We fabricate such magnetic multipole optics using lithographic techniques with pole piece sizes in the tens of μm , a thickness of up to 800 nm, a pole piece distance of 25 μm as well as variable geometries in order to optimize the resonant behavior. Due to those resonances, the characterized micro optics show an especially strong deflection of the TEMs 300 keV electron beam of more than 100 μrad at 3 GHz excitation frequency. Conducted electron spin resonance measurements confirm the possibility to excite spin waves in the magnetic pole pieces in the same frequency range. This allows for the application of models of the dispersion relation to determine favorable values for parameters like thickness, exchange interaction, and saturation magnetization in order to achieve the desired resonance frequency.

MA 27.5 Wed 10:45 HSZ/0004

Terahertz Spectroscopy of non-collinear magnetic state in ferrimagnetic iron garnet — •TUSHAR BARUAH¹, ANDRZEJ STUPAKIEWICZ², PAUL H. M. VAN LOOSDRECHT¹, and EVGENY A. MASHKOVICH¹ — ¹II. Physikalisches Institut, Universität zu Köln, 50937 Köln, Germany. — ²Faculty of Physics, University of Białystok, Ciolkowskiego 1L, 15-245 Białystok, Poland.

Data storage technologies and magnetic control research, in general, focuses primarily on magnets with anti-ferromagnetic exchange interactions for their ultrafast picosecond-scale dynamics. Among them, ferrimagnets are particularly appealing, as they combine high Terahertz (THz)-scale eigenfrequencies with the feasibility of ground state control. Non-collinear magnetic states in ferrimagnets exhibit complex spin dynamics, whose ultrafast behaviour remains partly understood. Using a table-top high-power broadband THz pump-optical probe setup integrated with a 10T superconducting magnet, we directly probe the field and temperature dependent spin dynamics in Bi-substituted Gadolinium iron garnet, which is a ferrimagnet with non-collinear magnetic state and a magnetic moment compensation point temperature. Our results show magnetisation dynamics in non-collinear state driven by overlap of exchange modes and THz cavity modes formed by multiple reflections inside the sample.

15 min break

MA 27.6 Wed 11:15 HSZ/0004

Spin-lattice coupling control of ultrafast order melting in antiferromagnetic insulators — ALEKSANDR BUZDAKOV¹, •RAVI KAUSHIK¹, NIKOLAI KHOKHLOV², JOHAN MENTINK², SERGEY ARTYUKHIN¹, and ALEKSEI KIMEL² — ¹Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy — ²Radboud University Nijmegen, Institute for Molecules and Materials, 6525 AJ Nijmegen, The Netherlands

Ultrafast order melting in magnetic insulators is governed by two processes: intrinsic intra-spin relaxation and spin-lattice energy transfer. Antiferromagnets, which lack net magnetization, can in principle evade angular-momentum constraints and display markedly faster order-parameter dynamics than ferromagnets, but experimental rates vary widely across materials. Here we combine first-principles magnetostriiction calculations, phonon and magnon spectral analysis, atomistic spin-

dynamics simulations and time-resolved second-harmonic generation to disentangle these pathways and explain material-dependent disparities. Focusing on two structurally similar antiferromagnets, Cr_2O_3 and FeBO_3 , we show that the strength of spin-phonon coupling - revealed by magnetostrictive response and phonon-magnon spectral overlap - dictates the dramatic difference in order-melting rates. We also achieved accelerated dynamics in Cr_2O_3 and show sub-2-ps order melting in both experiment and simulation. Our results identify spin-phonon coupling as the decisive control parameter for ultrafast antiferromagnetic dynamics and provide a practical framework to design faster switching in antiferromagnetic spintronic devices.

MA 27.7 Wed 11:30 HSZ/0004

Nonlinear optical probing of a strongly correlated phase transition in epitaxial NdNiO_3 thin films — •CHRISTIAN TZSCHASCHEL^{1,2}, FELIX UTSCH¹, QI SONG², SPENCER DOYLE³, GRACE A. PAN³, JULIA A. MUNDY³, and STEFAN EISEBITT^{2,4} —

¹Department of Physics, University of Zurich, Switzerland — ²Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Berlin, Germany — ³Department of Physics, Harvard University, USA — ⁴IOAP, TU Berlin, Germany

The family of rare-earth nickelates is a prime example of strongly correlated oxide materials displaying a wealth of physical phenomena from antiferromagnetism to superconductivity. NdNiO_3 specifically exhibits a metal-to-insulator phase transition upon cooling that is concomitant with the emergence of antiferromagnetic order.

Here, we use nonlinear optical second harmonic generation (SHG) in the near-infrared regime to gain insight into the symmetry and ultrafast dynamics of this correlated electronic and magnetic phase transition. In static measurements, we observe a symmetry reduction from orthorhombic in the paramagnetic phase to monoclinic in the antiferromagnetically ordered phase. Upon optical excitation, we observe a quench of the SHG signal and a restoration of the orthorhombic state within 125 fs. Our study highlights the capabilities of nonlinear optics and advances the understanding of strongly correlated quantum materials.

MA 27.8 Wed 11:45 HSZ/0004

Ultrafast angular momentum transfer in RKKY-coupled 4f antiferromagnets — S.-E. LEE¹, Y.W. WINDSOR^{1,2}, D.

ZAHN¹, A. KRAIKER³, K. KUMMER³, K. KLIEMT⁴, C. KRELLNER⁴,

C. SCHÜSSLER-LANGEHEINE⁵, N. PONTIUS⁵, U. STAUB⁶, D.V.

VYALIKH⁷, A. ERNST⁸, and •L. RETTIG^{1,9} — ¹Fritz-Haber-Institut

der MPG, DE — ²TU Berlin, DE — ³ESRF, Grenoble, FR —

⁴Goethe-Universität Frankfurt, DE — ⁵Helmholtz-Zentrum Berlin, DE — ⁶PSI, Villigen, CH — ⁷DIPC, San Sebastian, ES — ⁸Johannes Kepler University, Linz, AU — ⁹RP TU Kaiserslautern-Landau, DE

Antiferromagnets allow for direct angular momentum (AM) transfer between opposing spins, thereby avoiding AM transfer to the lattice, which limits ultrafast magnetization dynamics in ferromagnets. Here, we study the ultrafast magnetization dynamics in 4f antiferromagnetic intermetallics of type LnRh_2Si_2 ($\text{Ln}=\text{Pr, Nd, Sm, Gd, Tb, Dy, Ho}$) where we modify the magnitude of the on-site RKKY coupling strength via substitution of Ln ions. By combining time-resolved soft X-ray diffraction with ab-initio calculations, we find that the rate of AM transfer between opposing moments is directly determined by this coupling [1]. Moreover, the influence of itinerant conduction electrons has been explored in the Series GdT_2Si_2 by varying the transition metal T (T=Co, Rh, Ir). Here, we find a more than twofold increase in ultrafast AM transfer rate between the materials, which we associate with modifications in the conduction electron susceptibility due to differences in their density of states [2].

[1] Nat. Mater. 21, 514 (2022) [2] PRR 6, 043019 (2024)

MA 27.9 Wed 12:00 HSZ/0004

Time-resolved wide-field SHG imaging of ferroic materials — •ANDRIN CAVIEZEL, JAN GERRIT HORSTMANN, THOMAS LOTTERMOSER, and MANFRED FIEBIG — Department of Materials, ETH Zurich, Zurich, Switzerland

We investigate the ultrafast dynamics of van der Waals ferroics using time-resolved second harmonic generation (SHG) wide-field imaging. Controlling antiferromagnetic order on ultrafast timescales is of central relevance for spintronic applications, and van der Waals ferroics constitute highly promising material platforms. However, achieving such control requires an experimental technique that is simultaneously sensitive to ferroic order and combines micrometer spatial with femtosecond temporal resolution. Here, we present a setup for direct wide-field visualization of ferroic domain structures by exploiting SHG generated from high-energy pulses of an amplified laser system. The adjustable wavelength and polarization of pump and probe pulses, together with tailored pulse sequences for excitation, enable sensitive detection and selective manipulation of magnetic order. Our approach provides access to ultrafast processes in bulk ferroics with microscopic domain patterns as well as in micrometer-sized flakes of van der Waals ferroics under cryogenic conditions, opening new pathways for understanding and steering their nonequilibrium dynamics.

MA 27.10 Wed 12:15 HSZ/0004

Photoinduced demagnetization and carrier dynamics in SrRuO_3 thin films probed by time resolved THz spectroscopy — •ANKHIJUR ISLAM SEKH¹, HARUN MERT IYISLER¹, PHILLIP LEIPRECHT², MATHIAS BECK², PAUL LEIDERER², GAD KOREN³, IONELA LINDFORS-VREJOIU⁴, PAUL H.M. VAN LOOSDRECHT⁴, and JURE DEMSAR¹ — ¹JGU Mainz — ²University of Konstanz — ³Technion, Haifa — ⁴University of Cologne

SrRuO_3 is an itinerant ferromagnet ($T_c \approx 150$ K) whose T^2 resistivity below 30K signals a ferromagnetic Fermi-liquid ground state. We present the temperature (T) and excitation fluence (F) dependent photoinduced conductivity dynamics of thin films grown by MBE and PLD, following excitation with fs near-infrared pulses. We show that photoinduced changes in THz conductivity are governed by the changes in the scattering rate of the intraband Drude response. The T- and F-dependent photoconductivity dynamics suggest that rapid carrier thermalization is accompanied by magnon generation, consistent with a high spin-flip scattering rate due to strong spin-orbit coupling. Accordingly, over a broad T and F-range, the photoconductivity transients track the evolution of the magnon population. At temperatures below 20K and at lowest F, we observe a delayed rise in photoconductivity, which reflects the reduced e-e thermalization rate with its characteristic Fermi-liquid T^2 dependence.

MA 27.11 Wed 12:30 HSZ/0004

Element-specific magnetization dynamics of epitaxial ultrathin Co/Pt heterostructures — •PULOMA SINGH¹, CORENTIN AULAGNET², THOMAS JAUK³, SANDEEPA SHARMA^{1,4}, MARTIN SCHULTZE³, STÉPHANE MANGIN², CLEMENS VON KORFF SCHMISING¹, and STEFAN EISEBITT^{1,5} — ¹Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin, Germany — ²Université de Lorraine, CNRS, Institut Jean Lamour, Nancy, France — ³Institut für Experimentalphysik, Technische Universität Graz, Graz, EU, Austria — ⁴Institute for Theoretical Solid-state Physics, Freie Universität Berlin, Berlin, Germany — ⁵Technische Universität Berlin, Institut für Optik und Atomare Physik, Berlin, Germany

Magnetic systems comprising 3d ferromagnetic transition metals and 4d/5d heavy metals are of interest because of their potential application in future energy storage technology. The microscopic process involved after femtosecond laser excitation is complex and is still controversially discussed in the existing literature. We present a systematic and element specific study of epitaxial, ultrathin Co films (0.8 and 1.0 nm) sandwiched by Pt layers. We compare the ultrafast response for the different Co thicknesses as well as for out-of-plane and in-plane magnetic anisotropy by a combination of pump-probe spectroscopy in the optical and extreme ultraviolet spectral range. Exploiting the Pt $\text{O}_{2,3}$ and N_7 and Co $\text{M}_{2,3}$ resonances, we accurately disentangle the intrinsic and proximity induced magnetic moments of Co and Pt. We find consistently larger demagnetization amplitudes of the Pt magnetization compared to Co and a very pronounced thickness dependence.