

MA 43: Spin-Dependent Phenomena in 2D

Time: Thursday 9:30–11:15

Location: POT/0112

Invited Talk

MA 43.1 Thu 9:30 POT/0112

Defect-Induced Phase Transitions in the 2D Magnetic Semiconductor CrSBr — •SHENGQIANG ZHOU — Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany

As an air-stable van der Waals magnetic semiconductor, CrSBr has attracted great research interest due to its exceptional optical, electronic, and magnetic properties [1]. Below its Néel temperature of 132 K, CrSBr exhibits a typical A-type antiferromagnetic order consisting of antiferromagnetically coupled ferromagnetic monolayers [1, 2]. In this talk, I will present the magnetic phase transition from antiferromagnetic to ferromagnetic order in CrSBr induced by ion irradiation [3, 4]. We observe the emergence and subsequent suppression of the ferromagnetic phase in CrSBr as the irradiation fluence increases. Structural analysis combined with first-principles calculations suggests that the formation of interstitials promotes ferromagnetic coupling between the layers. At moderate irradiation fluences, the Curie temperature gradually decreases, reflecting the impact of crystalline degradation. Surprisingly, at even higher irradiation fluences, CrSBr does not amorphize but instead transforms into a new crystalline phase. These findings indicate that, by precisely tuning irradiation parameters and employing lithography techniques, one can selectively modulate the induced ferromagnetism in CrSBr in terms of magnetization strength, critical temperature, and spatial distribution. [1] E.J. Telford, et al. *Adv. Mater.*, 32, 2003240 (2020). [2] F. Long, et al. *Appl. Phys. Lett.* 123, 222401 (2023). [3] F. Long, et al. *Nano Lett.* 23, 8468 (2023). [4] F. Long, et al. *Adv. Phys. Res.*, 3, 2400053 (2024)

MA 43.2 Thu 10:00 POT/0112

Electric-field tunable valley excitons in proximity coupled WSe₂/CrI₃ heterostructures — FELIX HELLENKAMP¹, •YIHENG LI¹, MARC SCHÜTTE¹, KENJI WATANABE², TAKASHI TANIGUCHI³, LUTZ WALDECKER¹, CHRISTOPH STAMPFER^{1,4}, and BERND BESCHOTEN¹ — ¹2nd Institute of Physics and JARA-FIT, RWTH Aachen University, Germany — ²National Institute for Materials Science, Tsukuba, Japan — ³International Center for Materials Nanoarchitectonics, NIMS — ⁴PGI-9, Forschungszentrum Jülich, Jülich, Germany

Two-dimensional (2D) transition metal dichalcogenides have attracted significant interest due to their unique optical properties. The possibility to address the K and K' valley selectively via σ^+ and σ^- polarized light enables optical initialization and readout of the valley degree of freedom. The valley degeneracy can be lifted via magnetic proximity coupling to a 2D magnet such as CrI₃. However, in the heterostructures the resulting exciton splitting lacks tunability, limiting its applicability in device architectures that demand adjustable valley splitting. Our work shows a large tunability of the exciton splitting in a WSe₂/CrI₃ heterostructure via external displacement fields. Reflection contrast measurements show a displacement field induced change in the exciton resonance energy which is asymmetric with respect to the excitons at the K and K' valleys, leading to a 35% increase in exciton splitting at a displacement field of -0.4V/nm. We attribute the change in resonance energy to a reduction in the optical bandgap, caused by a displacement-field-induced modification in the band alignment.

MA 43.3 Thu 10:15 POT/0112

Atomic-scale visualization of quasi-one-dimensional structure and magnetic-field-tunable electronic states in CrSBr — •KEDA JIN^{1,2}, TOBIAS WICHMANN^{1,3}, F. STEFAN TAUTZ^{1,3}, FELIX LÜPKE^{1,4}, JOSE MARTINEZ-CASTRO^{1,2}, and MARKUS TERNES^{1,2} —

¹Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich — ²Institut für Experimentalphysik II B, RWTH Aachen, 52074 Aachen — ³Institut für Experimentalphysik IV A, RWTH Aachen, 52074 Aachen — ⁴Institute of Physics II, Universität zu Köln, 50937 Köln

The anisotropic two-dimensional (2D) van der Waals magnet CrSBr is famous for hosting a quasi-one-dimensional (1D) electronic structure, but its direct visualisation has remained elusive.

Using low-temperature scanning tunnelling microscopy and spectroscopy, we present the atomic-scale characterisation of this quasi-1D conduction bands in monolayer CrSBr on NbSe₂. Our measurements reveal a spatial anisotropy in the local density of states, confirming the existence of conduction bands that are flat along one crys-

tallographic direction but dispersive along the perpendicular direction. Moreover, we demonstrate that an applied magnetic field reconstructs its electronic structure, showcasing strong magneto-electronic coupling. Our work provides the real-space visualisation of the long-predicted electronic anisotropy and establishes its potential for developing magnetically-tunable low-dimensional electronic devices.

MA 43.4 Thu 10:30 POT/0112

Origin of Exchange Bias in Compensated and Orthogonal Spin Interfaces in vdW Heterostructures — •ADITYA KUMAR¹, ARAVIND BALAN¹, PATRICK REISER², SADEED HAMEED¹, THIBAUD DENNEULIN³, RAFAEL E. DUNIN-BORKOWSKI³, PATRICK MALETINSKY², and MATHIAS KLÄUI¹ — ¹Institute of Physics, Johannes Gutenberg University Mainz, Staudinger Weg 7, 55128 Mainz, Germany — ²Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland — ³Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany

Van der Waals heterostructures formed by mechanical stacking can create atomically flat, defect-free interfaces, yet exhibit exchange bias in expected compensated and orthogonal spin configurations. This work investigates the underlying spin-pinning mechanisms in heterostructures of out-of-plane ferromagnet Fe₃GeTe₂ interfaced with c-type out-of-plane antiferromagnet MnPS₃ and in-plane a-type antiferromagnet CrSBr. Using NV magnetometry and STEM holography imaging, we reveal distinct exchange bias origins: the spin reorientation transition in MnPS₃ induces large, robust exchange bias, while orthogonal coupling at the Fe₃GeTe₂/CrSBr interface generates circular flux closure domains that produce switchable exchange bias. [1] A. P. Balan et al., *Advanced Materials* 36, 2403685 (2024). [2] A. Kumar et al., *Small* 21, e06284 (2025).

MA 43.5 Thu 10:45 POT/0112

Spin-polarized scanning tunneling microscopy of antiferromagnetic spin ordering in a topological Hall material — ALEXINA OLLIER^{1,2}, VALERIA SHEINA^{1,2}, SEIK PAK⁴, CORINA URDANIZ^{1,2}, MUSKAN SANDE^{1,3}, SOONHYUNG LEE^{1,2}, LEI FANG^{1,2}, CHRISTOPH WOLF^{1,2}, WOONGHEE CHO⁶, PYEONGJAE PARK⁷, ANDREAS HEINRICH^{1,3}, JE-GEUN PARK⁶, MOON JIP PARK^{4,5}, and •WON-JUN JANG^{1,2} — ¹Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, Korea — ²Ewha Womans University, Seoul, Korea — ³Department of Physics, Ewha Womans University, Seoul, Korea — ⁴Department of Physics, Hanyang University, Seoul, Korea — ⁵Research Institute for Natural Science and High Pressure, Hanyang University, Seoul, Korea — ⁶Department of Physics and Astronomy, Seoul National University, Seoul, Korea — ⁷Materials Science and Technology Division, Oak Ridge National Laboratory, Tennessee, USA

We report spin-polarized scanning tunneling microscopy measurements on Co_{1/3}TaS₂. STM images acquired with a conventional tip reveal the triangular atomic lattice of the surface, whereas SP-STM uncovers additional symmetry features directly linked to the spin-polarized electronic structure of TaS₂ arising from the triple-Q magnetic order. The spin-dependent contrast observed with the SP tip confirms the presence of spin-polarized van Hove singularities, a hallmark of the non-coplanar magnetic state. These results demonstrate that SP-STM can directly probe the modified electronic structure arising from chiral magnetic textures in non-coplanar magnets.

MA 43.6 Thu 11:00 POT/0112

Super-Moiré Spin Textures in Twisted 2D Antiferromagnets — •KING CHO WONG¹, RUOMING PENG¹, ERIC ANDERSON², JACKSON ROSS³, ADAM WEI TSEN⁴, ELTON SANTOS³, XIAODONG XU², and JOERG WRACHTRUP¹ — ¹3rd Physics Institute, University of Stuttgart, Stuttgart, Germany — ²University of Washington, Seattle, USA — ³University of Edinburgh, Edinburgh, UK — ⁴University of Waterloo, Canada

Stacking two-dimensional (2D) layered materials offers a platform to engineer electronic and magnetic states. In general, the resulting states - such as Moiré magnetism - have a periodicity at the length scale of the Moiré unit cell. Here, we study magnetic order in twisted double bilayer chromium triiodide (tDB CrI₃) by means of scanning nitrogen-

vacancy microscopy. We observe long-range magnetic textures extending beyond the single Moiré unit cell, which we dub a super-Moiré magnetic state. At small twist angles, the size of the spontaneous magnetic texture increases with twist angle, opposite to the underlying Moiré wavelength. The spin-texture size reaches a maximum of about 300 nm in 1.1° twisted devices, an order of magnitude larger

than the underlying Moiré wavelength. The vector field maps suggest the formation of antiferromagnetic Neel-type skyrmions spanning multiple Moiré cells. The twist angle dependent study combined with atomistic simulations suggests that magnetic competition between the Dzyaloshinskii-Moriya interaction, magnetic anisotropy, and exchange interactions produces the super-Moiré spin orders.