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MM 13: Data-driven Materials Science: Big Data and Workflows I

Time: Tuesday 10:15–12:45 Location: SCH/A251

MM 13.1 Tue 10:15 SCH/A251
Surface reconstruction via automated LEED analysis based
on Bayesian optimization — ∙Xiankang Tang and Hongbin
Zhang — Institute of Materials Science, Technische Universitat Darm-
stadt, 64287 Darmstadt, Germany
Recent advances in machine learning have enabled the automation of
many material characterization processes, which are essential for re-
alizing autonomous experimentation for solid-state materials in the
near future. Low-energy electron diffraction (LEED) is a fundamen-
tal technique in surface science, providing structural reconstruction
information encoded in the energy-dependent intensity modulation of
diffracted beams. However, the complexity of data analysis and the
computational demands have limited the broader adoption of quanti-
tative LEED in routine surface structure determination. In this work,
we implement a Bayesian optimization-based approach to automatize
the LEED I(V) analysis, where the best matching structures can be
obtained for the experimental I(V) curves by minimize the R-factor be-
tween the experimental and simulated I(V) data. This approach can
bee combined with density functional calculations or atomisitic simula-
tions to further accelerate the recommendation of plausible structures
by minimizing total energies.

MM 13.2 Tue 10:30 SCH/A251
Structural relaxations for nonstoichiometric alloys without
forces — ∙Luca Numrich and Hongbin Zhang — Insitute of Mate-
rials Science, Technische Univerität Darmstadt, Darmstadt, Germany
Advances in machine learning and first-principles electronic-structure
methods are accelerating materials design, focusing on stoichiometric
compounds. Coherent potential approximation (CPA) is a standard
approach for alloys with chemical disorder but there is no compatible
implementation for forces, hindering the investigation of structural re-
laxations for nonstoichiometric alloys. For example, in many Ni-based
Heusler alloys, a high-temperature disordered B2 phase transforms into
the fully ordered L21 structure upon cooling via a second-order B2-L21
order-disorder transition.

In this work, we integrate Bayesian optimization (BO) with CPA as
implemented in the exact muffin-tin orbitals (EMTO) code to identify
low-energy crystal structures for nonstoichiometric alloys, as demon-
strated for Ni-Mn-Ga-X Heusler alloys. Symmetry analysis is used to
reduce the number of independent Wyckoff coordinates, which serve as
parameters for BO, while the energy per atom computed via EMTO-
CPA defines the objective function to be minimized. Using a Gaussian
process surrogate model with a parallel upper confidence bound ac-
quisition function, the framework autonomously proposes candidate
structures with progressively lower energies. Thus, instead of a re-
laxation via interatomic forces, an acquisition function is guiding the
relaxation.

MM 13.3 Tue 10:45 SCH/A251
A Python-based workflow for phase identification and map-
ping via Raman spectroscopy — ∙Felix Drechsler1, Mah-
naz Mehdizadehlima2, Cameliu Himcinschi1, David Rafaja2, and
Jens Kortus1 — 1TU Bergakademie Freiberg, Institute of Theoretical
Physics, D-09599 Freiberg, Germany — 2TU Bergakademie Freiberg,
Institute of Materials Science, D-09599 Freiberg, Germany
Raman spectroscopy is a powerful tool for identifying phases and com-
pounds. It is highly sensitive to both chemical and structural variations
and is particularly attractive due to its minimal sample preparation re-
quirements. This makes it well suited for fast phase identification and
the determination of spatial phase distributions, complementing estab-
lished techniques such as X-ray diffraction, element mapping via X-ray
spectroscopy, and phase mapping using electron backscatter diffrac-
tion. However, phase-resolved analysis of Raman mappings remains
challenging, as it involves processing high-dimensional data matrices
and robust identification relies on comparing the complete spectrum
with references.
In this talk, we present a Python-based workflow developed to address
this challenge. The approach employs multivariate analysis methods
and integrates mathematical similarity metrics with reference datasets
to enable robust and reproducible phase identification. The proposed
workflow provides an efficient way to construct Raman phase maps
and offers a valuable tool for material characterization.

MM 13.4 Tue 11:00 SCH/A251
Automated Prediction of Phase Stability with ab-initio Accu-
racy — ∙Prabhath Chilakalapudi, Marvin Poul, Jan Janssen,
and Jörg Neugebauer — Computational Materials Design, Max-
Planck-Institute for Sustainable Materials, Düsseldorf
Developing sustainable metallic alloys-free of toxic elements and com-
patible with circular synthesis-requires novel and efficient ways to ex-
plore large composition spaces. A key bottleneck is the automated, ab-
initio-accurate prediction of temperature-composition phase diagrams,
where experimental phase data is limited or difficult to obtain.

We present a reproducible, automated workflow that uses Machine-
Learned Interatomic Potentials (MLIPs) such as Atomic Cluster Ex-
pansion (ACE)[1] and non-equilibrium thermodynamic integration
(Calphy[2]) to compute free energies and phase stabilities. By
analysing key approximations including point-defect models, differ-
ent entropic contributions, and free-energy interpolation schemes, we
quantify the reliability of the calculated phase boundaries and pro-
vide meaningful “error bars” on the diagram. The workflow is demon-
strated for representative binary alloys and is structured for gradual
scaling to multicomponent systems. We leverage the pyiron[3] work-
flow framework for reproducible and efficient automation, to accelerate
the discovery of sustainable materials.

[1] R. Drautz, Phys. Rev. B 100, 249901 (2019).
[2] S. Menon et al., npj Comput. Mater. 10, 261 (2024).
[3] J. Janssen et al., Comput. Mater. Sci. 163, 24-36 (2019).

15 min. break

MM 13.5 Tue 11:30 SCH/A251
Towards Disorder-Aware Materials Discovery - Recognizing
and Modeling Crystallographic Disorder — ∙Konstantin S.
Jakob1, Aron Walsh2, Karsten Reuter1, and Johannes T.
Margraf1,3 — 1Fritz-Haber-Institut der MPG, Berlin — 2Imperial
College London — 3Universität Bayreuth
Recent computational materials discovery efforts have led to an enor-
mous number of predictions of previously unknown, potentially stable
inorganic, crystalline materials. However, these efforts are currently
limited to predicting perfectly crystalline materials. As a consequence,
many of these predictions cannot be verified in experiments, where
kinetic effects, defects, and crystallographic disorder can be crucial.
Here, we discuss disorder as a current frontier in materials discov-
ery. To this end, we show that machine learning classification models
can reliably recognize disordered materials and demonstrate that a
significant fraction of computationally predicted materials are likely
disordered [1]. On the example of compositionally complex transition
metal ferrite spinels, we then demonstrate how machine learning in-
teratomic potentials and Monte Carlo sampling can be used to tackle
such disordered systems efficiently.

[1] K.S. Jakob, A. Walsh, K. Reuter, and J.T. Margraf, Adv. Mater.
e14226 (2025).

MM 13.6 Tue 11:45 SCH/A251
Efficient Exploration of the Unknown: Distance-Based Active
Learning with SISSO Descriptors and Mendeleev Similari-
ties for Materials Discovery — ∙Sreejani Karmakar1, Akhil
S. Nair1,2, Lucas Foppa1, and Matthias Scheffler1 — 1Fritz
Haber Institute of the Max Planck Society, Berlin, Germany — 2Freie
Universität Berlin, Berlin, Germany
The performance of AI models depends strongly on the distribution
of their training data, which ideally should be independent and iden-
tically distributed. Materials-science datasets often violate this con-
dition, containing redundancy and bias that hinder the discovery of
statistically rare high-performance materials. Active learning (AL)
helps by building concise, diverse training sets, introducing underrep-
resented materials classes. Commonly, AL relies on uncertainty esti-
mates derived from the variance of model ensembles[1], but these are
frequently overconfident and limit AL efficiency. We introduce an alter-
native strategy that selects candidate materials based on their distance
from the existing training set in a low-dimensional descriptor space[2].
These descriptors, derived via SISSO (sure independence screening
and sparsifying operator) symbolic regression approach. This distance-
guided approach outperforms ensemble-based uncertainty AL, success-
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fully identifying perovskites with exceptional properties. Adding the
Mendeleev similarity metric further improves dataset diversity and
supports efficient navigation of unexplored material space.

[1] A. Nair et al., npj Comput. Mater., 11, 150, 2025. [2] D. Wu et
al., Inf. Sci., 474, 90, 105, 2019.

MM 13.7 Tue 12:00 SCH/A251
Where Are Large Language Models Actually Useful for Ma-
terials Design? — ∙Hedda Oschinski, Maximilian L. Ach,
David Greten, Konstantin S. Jakob, Christian Carbogno, and
Karsten Reuter — Fritz-Haber-Institut der MPG, Berlin
The rapid development of large language models (LLMs) and LLM-
based agents has opened new possibilities for accelerating materials
discovery and design. In this work, we explore their potential in the
context of solar cell materials, a class of systems requiring complex,
multi-property optimization across chemistry and materials science.
By systematically evaluating a range of tasks for a well-known test
set of Elpasolites - from context preparation and descriptor priori-
tization to design hypothesis generation and autonomous validation
within an agent framework - we identify where current LLMs provide
genuine utility and where critical limitations remain. Our findings of-
fer a grounded perspective on how these tools can be integrated into
materials discovery workflows, and what developments are needed to
expand their impact in the future.

MM 13.8 Tue 12:15 SCH/A251
Predictive and interpretable machine learning models for
thermodynamics tuning of metal hydrides for hydrogen stor-
age — ∙Sinan S. Faouri1, Kai Sellschopp2,3, Claudio Pistidda3,
and Paul Jerabek3 — 1Mechanical and Industrial Engineering De-
partment, Applied Science Private University, Amman, Jordan —
2Department of Chemical and Process Engineering, University of Can-
terbury, Christchurch, New Zealand — 3Institute of Hydrogen Tech-
nology, Helmholtz-Centre Hereon, Geesthacht, Germany
Metal hydrides remain among the most promising materials for solid-
state hydrogen storage due to their tunable thermodynamic behavior.
However, predicting key properties such as equilibrium pressure and
hydrogenation enthalpy remains challenging, especially across diverse

alloy systems. In this work, we explore feature-based machine learning
strategies to model these thermodynamic quantities from elemental de-
scriptors and derived structural features. The study combines experi-
mental and computational data to identify the most relevant predictors
governing hydrogen absorption thermodynamics. Particular attention
is given to the relationship between atomic-scale size parameters, elec-
tronic features, and their collective influence on pressure-enthalpy cor-
relations. The results demonstrate that data-driven approaches can re-
veal non-obvious structure-property relationships and guide the search
for alloys with optimized storage performance. The presented frame-
work offers a step toward integrating machine learning with physical
insights for accelerated discovery of functional hydrides.

MM 13.9 Tue 12:30 SCH/A251
Score-based diffusion models for accurate crystal struc-
ture inpainting and reconstruction of hydrogen positions —
∙Timo Reents1, Arianna Cantarella2, Marnik Bercx1, Pietro
Bonfà2,3, and Giovanni Pizzi1 — 1PSI Center for Scientific Com-
puting, Theory and Data, CH-5232 Villigen PSI, Switzerland —
2Department of Physics and Earth Sciences, University of Parma, IT-
43124 Parma, Italy — 3Dipartimento di Scienze Fisiche, Informatiche
e Matematiche, University of Modena and Reggio Emilia, IT-41125
Modena, Italy
Generative AI methods are rapidly evolving to speed up and improve
materials discovery. Diffusion based models can not only be adopted to
generate new materials with desired properties but also to reconstruct
crystal structures for which structural information is only partially
available. In this work, we use Microsoft’s mattergen [1], a diffusion
based model originally designed to generate new stable crystal struc-
tures, and extend it to reconstruct missing hydrogen sites in crystal
structures reported in experimental databases. This is particularly use-
ful as the experimental measurement of hydrogen sites with standard
XRD is typically challenging due to weak scattering of hydrogen. We
show how to leverage image inpainting approaches known from com-
puter vision, combined with universal machine learning interatomic po-
tentials, to improve the success rate of correctly identifying the missing
sites or finding lower energy configurations while significantly lowering
the computational cost with respect to a direct DFT approach.

[1] Zeni, C. et al., Nature 639, 624-632 (2025)
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