
Dresden 2026 – MM Tuesday

MM 17: Data-driven Materials Science: Big Data and Workflows II

Time: Tuesday 14:00–15:45 Location: SCH/A251

MM 17.1 Tue 14:00 SCH/A251
Modelling Diffusion Kinetics in Refractory High Entropy
Alloys Using Graph Neural Network Database Models —
∙Klemens Lechner1, Jiyao Zhang1, Peter Wagatha2, Wolfram
Knabl2, Helmut Clemens1, and David Holec1 — 1Department of
Materials Science, Montanuniversitaet Leoben — 2Plansee SE
Refractory high-entropy alloys (RHEAs) offer exceptional mechanical
and thermal properties, such as high-temperature strength, and may
exhibit high-temperature oxidation and corrosion resistance. However,
their stability at high temperatures has yet to be confirmed. Nonethe-
less, even thermodynamically unstable solid solutions can have useful
applications if the decomposition is slow. This is inherently connected
with the (self-)diffusion kinetics. In this study, we present a workflow
for the systematic investigation of diffusion kinetics in RHEAs. The
necessary diffusion barriers are predicted using a graph neural network
(GNN). We train the GNN using an active learning cycle involving
molecular statics simulations with a universal machine-learning inter-
atomic potential (uMLIP). The training data of migration barriers are
calculated using the Nudged Elastic Band method. By varying the
amount of training data, the GNN can be trained to an accuracy that,
in theory, can fully mimic that of the uMLIP but with a more efficient
computation. This is crucial for larger-scale modeling applications,
e.g., the kinetics of decomposition, ordering or clustering of specific
elements. We demonstrate the usage and performance of the GNN to
quantify self-diffusion in Mo-Nb-Ta-W alloys using the Kinetic Monte
Carlo method.

MM 17.2 Tue 14:15 SCH/A251
Broken neural scaling laws in machine learning for optical
properties of metals — ∙Max Großmann, Marc Thieme, Malte
Grunert, and Erich Runge — Institute of Physics and Institute of
Micro- and Nanotechnologies, Technische Universität Ilmenau, 98693
Ilmenau, Germany
Neural scaling laws guide the development of machine-learning models
and their training datasets. Here, we investigate them in the context
of materials science, where data are inherently costly and scarce, using
dielectric functions of metals as an example. We compute dielectric
functions for 205,224 intermetallic compounds using high-throughput
ab initio calculations and train two multi-objective graph neural net-
works, OptiMetal2B and OptiMetal3B—the latter incorporating
three-body interactions—to predict the complex interband dielectric
function and the Drude frequency. Systematic variations in the num-
ber of training data and model parameters reveal so called "broken"
neural scaling laws. Data scaling follows a smoothly broken power
law, with steeper slopes occurring above 20,000 materials. In contrast,
parameter scaling follows a conventional power law but saturates at
around ten million parameters. Including three-body interactions im-
proves accuracy by about 12% but leaves scaling slopes essentially un-
changed. These findings suggest that, in the context of spectroscopy,
expanding high-quality datasets is a more effective way to improve
machine-learning models than optimizing network architectures, in-
creasing body order, or merely increasing network size.

MM 17.3 Tue 14:30 SCH/A251
Simultaneous Learning of Static and Dynamic Charges —
Philipp Stärk1, ∙Philip Loche2, Marcel Langer1, Henrik
Stooß1,3, Michele Ceriotti2, and Alexander Schlaich1,3 —
1Stuttgart Center for Simulation Science, University of Stuttgart, Ger-
many — 2Laboratory of Computational Science and Modeling, École
Polytechnique Fédérale de Lausanne, Switzerland — 3Institute for
Physics of Functional Materials, Hamburg University of Technology,
Germany
Long-range interactions and electric response are essential for accu-
rate modeling of condensed-phase systems, yet remain challenging for
atomistic machine learning. Static charges modulate Coulomb interac-
tions, while dynamic charges such as atomic polar tensors describe the
response to external electric fields. We compare strategies for learning
both types of charges: independent models; coupled learning with or
without an isotropic dielectric correction; and coupled learning with
an environment-dependent screening. While screening corrections are
crucial in the coupled case, assuming homogeneous, isotropic screening
fails in heterogeneous systems such as water clusters. Learning a local

screening restores accuracy for dynamic charges but offers negligible
improvement over independent models while increasing computational
cost.

MM 17.4 Tue 14:45 SCH/A251
A high-throughput study of heterostructures with polar dis-
continuities — ∙Maria Andolfatto1,2,3, Junfeng Qiao2,1, Da-
vide Campi3, and Nicola Marzari1,2 — 1PSI - Switzerland —
2EPFL - Switzerland — 3Unimib - Italy
Heterostructures composed of two bulk insulating materials with dif-
ferent polarizations can exhibit localized conductive states at the in-
terfaces and could lead to a wide range of technological applications.
Currently, most studies focus on perovskite-based materials to engi-
neer such heterostructures, whose number and performance is limited.
This project aims to identify new candidate heterostructures exhibit-
ing interface-localized conductive states by leveraging high-throughput
computational screening. Starting from thousands of bulk materials,
we compute the polarization and we systematically identify thousands
of possible interface combinations. Finally, we analyze the resulting
localized density of states of thirty-one heterostructures to assess the
formation of two-dimensional electron gases (2DEGs).

MM 17.5 Tue 15:00 SCH/A251
Leveraging Koopmans band structure for exciton character-
ization in materials — ∙Miki Bonacci1, Nicola Colonna1, Ed-
ward Linscott1, and Nicola Marzari1,2 — 1PSI Center for Scien-
tific Computing, Theory and Data, 5232 Villigen PSI, Switzerland —
2Theory and Simulation of Materials (THEOS), Ecole Polytechnique
Federale de Lausanne, CH-1015 Lausanne, Switzerland
Exciton characterization is crucial for several materials applications,
ranging from energy transport and storage technologies to photocatal-
ysis, plasmonic, sensing. The ab initio state-of-the-art approach is
many-body perturbation theory (MBPT), in particular the Bethe-
Salpeter equation (BSE) [1]. This is usually built on top of com-
putationally demanding G0W0 quasiparticle (QP) band structures
(BSE@G0W0 approach). In this work, we demonstrate how it is pos-
sible to construct the BSE Hamiltonian starting from Koopmans func-
tionals [2] eigenvalues as the main ingredient for the BSE Hamiltonian
(BSE@KI), obtaining optical spectra with comparable accuracy with
respect to the BSE@G0W0, at reduced computational cost. Auto-
mated workflows to compute BSE@KI are provided within the AiiDA
workflow engine [3].

[1] Onida et al., Rev. Mod. Phys., 74(2), 601-659 (2002)
[2] Dabo et al., Phys. Rev. B, 82, 115121 (2010)
[3] Huber et al., Sci. Data, 7(1):300 (2020)

MM 17.6 Tue 15:15 SCH/A251
Many-body perturbation theory vs. density functional the-
ory: A systematic benchmark for band gaps of solids —
∙Marc Thieme1,2, Max Großmann1, Malte Grunert1, and
Erich Runge1 — 1Institute of Physics and Institute of Micro- and
Nanotechnologies, Technische Universität Ilmenau, 98693 Ilmenau,
Germany — 2Institute of Applied Physics, Friedrich Schiller Univer-
sität, 07743 Jena, Germany
The band gap is one of the most important material properties for
optoelectronic applications. However, predicting band gaps remains a
challenging task in materials science. Here, we benchmark many-body
perturbation theory against density functional theory, the workhorse
of computational materials science, for predicting the band gaps of
solids. We systematically compared four 𝐺𝑊 variants—𝐺0𝑊0 using
the plasmon-pole approximation (𝐺0𝑊0-PPA), full-frequency quasi-
particle 𝐺0𝑊0 (QP𝐺0𝑊0), full-frequency quasiparticle self-consistent
𝐺𝑊 (QS𝐺𝑊 ), and QS𝐺𝑊 augmented with vertex corrections in 𝑊
(QS𝐺𝑊̂ )—against the currently best-performing and popular density
functionals. Our results show that the QS𝐺𝑊̂ produces band gaps so
accurate that they can even flag questionable experimental measure-
ments, albeit at an extremely high computational cost. To balance
accuracy and efficiency, we identify lower-cost alternatives, such as the
QP𝐺0𝑊0 and a rescaled version of the QS𝐺𝑊 , which achieve nearly
the same accuracy as the QS𝐺𝑊̂ while being significantly more effi-
cient, making them promising candidates for generating high-fidelity
datasets in machine-learning-driven materials discovery.
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MM 17.7 Tue 15:30 SCH/A251
Learning 𝐺0𝑊0 Self-Energies in Real Space with Equivariant
Neural Networks — ∙Elisabeth Keller, Karsten W. Jacob-
sen, and Kristian S. Thygesen — CAMD, DTU Physics, Kongens
Lyngby, Denmark
Many-body 𝐺0𝑊0 calculations provide highly accurate quasiparticle
energies for semiconductors and insulators beyond standard density-

functional theory, but at a much higher computational cost.
To overcome this limitation, we use equivariant neural networks to

replace the explicit 𝐺0𝑊0 self-energy evaluation. The networks are
trained on 𝐺0𝑊0 self-energies from GPAW projected onto an atom-
centered LCAO basis. Using this representation, we investigate how
the real-space localization of the self-energy enables learning from
atomic configurations.
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