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MM 22: Data-driven Materials Science: Big Data and Workflows III

Time: Wednesday 10:15–12:45 Location: SCH/A216

MM 22.1 Wed 10:15 SCH/A216
Hashing It Out: Overcoming the Duplicate Structure Filter-
ing Bottleneck for Large Data Sets — ∙Julian Holland, Juan
Manuel Lombardi, Chiara Panosetti, and Karsten Reuter —
Fritz Haber Institute, Berlin, Germany
With the increasingly data-rich landscape of computational chem-
istry research, new bottlenecks to material property elucidation have
emerged stemming from data processing. Duplicate detection is of-
ten an essential data processing step for active learning, global opti-
mization, and general PES exploration algorithms to ensure efficiency
and functionality. Such duplication checks typically scale unfavorably
with the number of structures, potentially taking longer to perform
than the data generation. Hashing-based methods, which have decou-
pled scaling with dataset size, circumvent this but are conventionally
too rigid to reliably find duplicates. In this talk, we present a demo-
cratic hashing duplicate detection algorithm that is flexible enough
to detect duplicate structures with arbitrarily similar, but distinct,
global descriptors nearly instantly. The uniqueness of the structure
can be determined by an ensemble of hash functions associated with
a set of randomly perturbed global descriptors. We compare the per-
formance of our duplicate detection algorithm against conventional
distance-matrix-based methods and introduce a standardized suite of
duplicate detection benchmarks. Our algorithm is not only faster but
often significantly more robust at detecting known duplicates.

MM 22.2 Wed 10:30 SCH/A216
MC3D: The Materials Cloud FAIR and full-provenance mate-
rials database — ∙Michail Minotakis — PSI Center for Scientific
Computing, Theory and Data, 5232 Villigen PSI, Switzerland
Carefully curated databases of materials and their properties have
become invaluable resources for a range of applications, from prop-
erty prediction using machine learning techniques to materials discov-
ery. Here, we introduce MC3D, the Materials Cloud three-dimensional
database, in which more than 95% of the available materials are,
to date, classified as experimentally known. This database is de-
rived from structures sourced from three major databases: the Paul-
ing File, the Inorganic Crystal Structure Database, and the Crys-
tallography Open Database. After careful curation, the final col-
lection of 72,609 unique stoichiometric compounds is refined using
density-functional theory calculations at the PBEsol level, executed
in Quantum ESPRESSO and leveraging the SIRIUS library for op-
timized GPU performance. The AiiDA materials informatics in-
frastructure (http://aiida.net) manages each workflow stage, ensur-
ing full traceability and preserving simulation provenance. The re-
sults are freely accessible in the MC3D section of Materials Cloud
(https://mc3d.materialscloud.org) and are already being used as a
starting point for materials discovery projects, such as novel thermo-
electrics, electrides, superconductors, or materials displaying a large
nonlinear Hall effect.

MM 22.3 Wed 10:45 SCH/A216
Building a FAIR Community around Parsing — ∙Nathan
Daelman1, Alvin N. Ladines1, Esma Boydas1, Martin Kuban1,
Bernadette Mohr1, Sascha Klawohn1, Rubel Mozumber1,
Christina Ertural2, Silvana Botti3, Joseph F. Rudzinski1,
Lauri Himanen1, and FAIRmat Team1 — 1Inst. für Physik,
Humboldt-Universität zu Berlin — 2Department of Materials Chem-
istry, Federal Institute for Materials Research and Testing, Berlin —
3RC-FEMS and Faculty of Physics, Ruhr University Bochum
NOMAD [nomad-lab.eu][1, 2] is an open-source data infrastructure for
materials science data. One of its most praised features is how NO-
MAD allows for direct ingestion of various software output formats.
This gives data producers access with minimal effort to the whole
toolkit infrastructure system regardless of their choice of simulation
code. As the NOMAD community extends into related scientific disci-
plines, parsing procedures should grow alongside and empower casual
users to contribute too. To this end, I will be presenting two new pars-
ing frameworks: (i) Mapping Annotation which connects code-specific
formats to the NOMAD interoperable schema, while gracefully han-
dling syntatic concerns; (ii) an agentic LLM interface for hooking up
third-party parsers via the Model Context Protocol (MCP). Finally,
I will highlight how both approaches fit into NOMAD Plugins and

NOMAD Actions.
[1] Scheidgen, M. et al., JOSS 8, 5388 (2023).
[2] Scheffler, M. et al., Nature 604, 635-642 (2022).

MM 22.4 Wed 11:00 SCH/A216
Uncertainty Propagation in Machine-learned Interatomic Po-
tentials — ∙Haitham Gaafer, Jan Janssen, and Jörg Neuge-
bauer — Computational Materials Design, Max-Planck-Institute for
Sustainable Materials, Düsseldorf
Accurate multiscale materials modeling requires that uncertainties be
quantified and propagated consistently from the electronic-structure
level to macroscopic property predictions. Machine-learned in-
teratomic potentials (MLIPs), trained on density-functional theory
(DFT) reference data, now routinely reach near-DFT accuracy at dra-
matically reduced computational cost. Yet the connection between fit-
ting errors in an MLIP and uncertainties in derived physical properties,
such as bulk moduli or phase stabilities, remains insufficiently under-
stood. We present a data-driven pyiron workflow designed to analyze
how uncertainties originating in MLIP training propagate into thermo-
mechanical property predictions. As a case study, we construct diverse
DFT training sets for Cu, Ag, and Au using the Automated Small
SYmmetric Structure Training (ASSYST) workflow, and fit computa-
tionally efficient atomic cluster expansion (ACE) potentials employing
a minimal basis optimized to reach a target root-mean-square error.
These potentials are subsequently used to determine equations of state
and to quantify uncertainties in key properties, including the equilib-
rium lattice constant, bulk modulus, and its pressure derivative. Our
results provide a transparent link between MLIP fitting quality and
property reliability, offering a systematic route for uncertainty-aware
atomistic modeling.

MM 22.5 Wed 11:15 SCH/A216
Accurately predicting thermal conductivity using non-
equilibrium molecular dynamics simulations and machine-
learned force fields — ∙Florian Unterkofler1, Lukas
Legenstein1, Sandro Wieser2, and Egbert Zojer1 — 1Graz Uni-
versity of Technology, Austria — 2TU Wien, Austria
With the rise of machine-learned interatomic potentials, simulations
have become an even more crucial tool for predicting material proper-
ties. We previously achieved accurate predictions of experimentally ob-
served thermal conductivity of acenes, using system-specific, machine-
learned Moment Tensor Potentials (MTPs) within a lattice dynamics
approach.[1] To obtain a complementary real-space perspective, we
now investigate whether comparable accuracy can be achieved using
non-equilibrium molecular dynamics (NEMD).

Here, we present the workflow required to obtain accurate and re-
liable predictions when applying MTPs in NEMD simulations. We
show that, due to the inherently stochastic nature of both MD and
MTP training, a thorough statistical analysis of multiple simulations
with different initial conditions and different realizations of the MTP
is necessary. Furthermore, we highlight the importance of selecting ap-
propriate training data to generate robust MTPs. When these consid-
erations are taken into account, we achieve an excellent agreement be-
tween experiments, lattice-dynamics, and NEMD results, with NEMD
simulations providing tools to investigate heat-transport bottlenecks
in real space.

[1] L. Legenstein et al., npj Comput Mater 11, 29 (2025)

15 min. break

MM 22.6 Wed 11:45 SCH/A216
Data-efficient training of interatomic potentials using finite-
temperature DFT structures — ∙Martin Schlipf1, Sudar-
shan Vijay1,2, and Georg Kresse1,3 — 1VASP Software GmbH,
Berggasse 21/14, 1090 Vienna, Austria — 2Department of Chemical
Engineering, Indian Institute of Technology Bombay, Powai, Mumbai,
Maharashtra 400076 India — 3Faculty of Physics and Center for Com-
putational Materials Science, University of Vienna, Kolingasse 14-16,
A-1090 Vienna, Austria
We successfully generated a database of 150,000 unique finite-
temperature structures using VASP and a ”one-shot” DFT method
to systematically sample atomic environments across the periodic ta-
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ble. Despite the small size of our training set compared to the millions
typically used for foundation models, our resulting interatomic poten-
tials achieve a force prediction error of 72 meV/Å. This performance is
of the same magnitude as current state-of-the-art foundation models
when tested against the same high-quality dataset. This result demon-
strates that focusing on data quality and chemical diversity at finite
temperatures is as impactful as massive data quantity. Furthermore,
we showcase the computational infrastructure that made it possible to
integrate interatomic potentials into an ab-initio software and discuss
necessary enhancements to electronic optimization methods to com-
pute magnetic materials more reliably.

MM 22.7 Wed 12:00 SCH/A216
MACE-based Machine Learning Interatomic Potentials for
Iron-Nickel Alloys: Validation Across Composition and Pres-
sure Ranges — ∙Kushal Ramakrishna1, Mani Lokamani1,
and Attila Cangi1,2 — 1Helmholtz-Zentrum Dresden-Rossendorf
(HZDR), D-01328 Dresden, Germany — 2Center for Advanced Sys-
tems Understanding (CASUS), D-02826 Görlitz, Germany
Machine-learned interatomic potentials have emerged as powerful tools
bridging quantum-level accuracy with mesoscale simulations in com-
putational materials science. We present a comprehensive evaluation
of MACE models for iron-nickel alloys across a wide range of composi-
tions and pressures, with direct relevance to Earth’s core modeling and
industrial applications. We construct special quasirandom structures
(SQS) to simulate random iron-nickel alloy configurations and train
MACE models on density functional theory datasets combined with
experimental validation data. Extensive short-range order analysis
confirms improved chemical randomness for larger supercells, critical
for faithful property sampling. Multiple MACE flavors are system-
atically compared against experimental measurements for structural
and elastic properties in both body-centered cubic and face-centered
cubic phases. Our results demonstrate that fine-tuned MACE mod-
els achieve remarkable predictive accuracy for equation-of-state be-
havior and elastic properties across all compositions. This approach
successfully bridges computational predictions with experimental ob-
servations, enabling accelerated materials discovery for technologically
relevant transition metal alloys.

MM 22.8 Wed 12:15 SCH/A216
Benchmarking the MACE Foundation Model for Solid-State
Ion Conductors — ∙Takeru Miyagawa, Yufeng Xu, Levon
Satzger, Waldemar Kaiser, and David A. Egger — Physics De-
partment, TUM School of Natural Sciences, Technical University of
Munich, 85748 Garching, Germany

Recent progress in foundation model machine learning potentials
(MLPs) has demonstrated promising transferability and accuracy
across diverse material classes [1, 2]. Instead of being trained from
scratch for each new system, these large pretrained models aim to pro-
vide broadly accurate force and energy predictions that can be refined
for new chemistries with comparatively small datasets. This offers
a complementary route to traditional system-specific MLPs and may
reduce the cost of studying complex ionic materials.

Here, we benchmark the MACE foundation model [2] on representa-
tive solid-state ion conductors (SSICs) through direct comparison with
first-principles calculations. We assess its accuracy for phonons and
vibrational properties, characterize temperature-driven structural and
phase transitions, and analyze ion transport across different phases.
We then explore data-efficient DFT-based fine-tuning strategies to im-
prove the foundation model’s accuracy for SSICs and clarify the lim-
its and strengths of pretrained representations in the context of ionic
transport. References [1] Batatia, I. et al., Adv. Neural Inf. Process.
Syst. 35, 11423-11436, 2022, [2] Batatia, I. et al., J. Chem. Phys. 163,
184110, 2025

MM 22.9 Wed 12:30 SCH/A216
MACE-𝜇-𝛼: A Foundation Model for Molecular Dipole Mo-
ments and Polarizabilities — ∙Nils Gönnheimer1,2, Venkat
Kapil3, Karsten Reuter2, and Johannes T. Margraf1,2

— 1Universität Bayreuth — 2Fritz-Haber-Institut der MPG —
3University College London
Machine-learning interatomic potentials (MLIPs) have had a strong
impact on computational chemistry, physics, and materials science in
recent years by filling the accuracy gap between first-principles meth-
ods and classical force fields, at a fraction of the computational cost of
the former. MLIPs are so far typically limited to predicting energies
and forces, however, while other properties traditionally obtained from
first-principles calculations have remained less accessible. Here, equiv-
ariant neural network architectures have led to enormous progress, as
they allow the prediction of vectorial and tensorial properties on the
same footing as energies and forces.
Here, we present the MACE-𝜇-𝛼 architecture for predicting dielectric
properties based on the MACE MLIP framework. Trained on over 1.6
million organic systems, the corresponding foundation model allows
the accurate prediction of molecular dipole moments and polarizabili-
ties, as well as Raman and IR spectra (when combined with an MLIP).
Notably, despite being trained on gas-phase molecules and clusters, the
model also shows transferability to condensed systems such as molec-
ular crystals.
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