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Topical Talk MM 5.1 Mon 10:15 SCH/A251
Machine Learning for Materials Discovery: from Big Data
to Predictive Insights — ∙Silvana Botti — Research Center Fu-
ture Energy Materials and Systems and Interdisciplinary Centre for
Advanced Materials Simulation, Ruhr University Bochum, Univer-
sitätsstraße 150, D-44801 Bochum, Germany
Machine learning (ML) models for materials science are rapidly evolv-
ing, driven by large-scale, high-quality datasets and innovative neural
network architectures. This talk explores critical challenges in improv-
ing the accuracy and reliability of complex ML models, examining the
interplay between the quality and quantity of training data and model
performance across material properties. Recent advances have been
marked by the creation of extensive FAIR databases, such as Alexan-
dria (https://alexandria.icams.rub.de/), which provides over 7 million
density-functional theory calculations spanning periodic compounds
of various dimensionalities. These comprehensive datasets enable sys-
tematic investigation of the relationship between training data vol-
ume/quality and model accuracy.

J. Schmidt, T.F.T. Cerqueira, A.H. Romero, A. Loew, F. Jäger, H.-
C. Wang, S. Botti, M.A.L. Marques, Improving machine-learning mod-
els in materials science through large datasets, Mater. Today Phys. 48,
101560 (2024).

MM 5.2 Mon 10:45 SCH/A251
Screening of high-entropy oxides as oxygen conductors for
fuel cells — ∙Jesper R. Pedersen, Ciku Parida, Benjamin H.
Sjølin, and Ivano E. Castelli — Department of Energy Conversion
and Storage, Technical University of Denmark, Kgs. Lyngby 2800,
Denmark
High-entropy materials are at the cutting edge of materials design and
this work investigates their suitability for use in fuel cells. However,
screening high-entropy materials is computationally demanding, espe-
cially for properties such as oxygen migration barriers which are criti-
cal for components used in fuel cell cathodes. We aim to address this
challenge by fine-tuning the MACE foundation model to a generated
database containing more than 400 nudged elastic band (NEB) calcu-
lations spanning the chemical space of double perovskites. We show
this new model achieves accuracy similar to the DFT calculations not
only on structural relaxations, but also for the more complex task of
saddle-point discovery. This enables the continued rapid exploration of
the chemical space beyond the initial screening, leading to new insights
into factors governing oxygen migration in fuel cell cathodes.

MM 5.3 Mon 11:00 SCH/A251
Interpretable Bayesian Optimization for Autonomous Ma-
terials Discovery — ∙Akhil S. Nair1,2, Lucas Foppa1, and
Matthias Scheffler1 — 1The NOMAD Laboratory at the FHI of
the Max Planck Society, Berlin, Germany — 2Institut für Chemie und
Biochemie, Freie Universität Berlin, Germany
Bayesian Optimization (BO) can accelerate materials discovery by ex-
ploring complex design spaces using surrogate models and acquisition
functions [1]. Its efficiency, however, relies on identifying a small set
of key parameters or features that are potentially correlated with the
target property. Existing feature-selection methods often fall short, as
they struggle to capture nonlinearities and interactions among features
[2], limiting BO’s performance in high-dimensional spaces. To over-
come this challenge, we introduce the Sparse Adaptive Representation-
based Bayesian Optimization (SARBO) framework, which integrates
BO with the Sure-Independence Screening and Sparsifying Operator
(SISSO) method [3]. By capturing the non-linear interactions, SARBO
identifies the most relevant features and adaptively updates their se-
lection during the BO cycles, ensuring the optimization is continuously
guided by the features that matter most. We demonstrate SARBO’s
effectiveness through the simulated discovery of single-atom alloy cat-
alysts for CO2 activation.

[1] Y. Tian, et al., npj Comput. Mater. 11, 209 (2025)
[2] M. R-. Kochi et al., Chem. Sci. 16, 5464 (2025)
[3] R. Ouyang et al., Physical Review. M 2, 8 (2018)

MM 5.4 Mon 11:15 SCH/A251
Fantastic Polaronic Peaks and Where to Find Them: Learn-
ing Vibrational Spectra of a Disordered Energy Material

— ∙Christoph Dähn1, Yang Wang2, Risov Das2, Bettina V.
Lotsch2, Karsten Reuter1, and Christian Carbogno1 — 1Fritz-
Haber-Institut der MPG, Berlin — 2MPI für Festkörperforschung,
Stuttgart
Vibrational Raman and infrared spectroscopy offers unique opportu-
nities for characterizing microscopic structural and dynamical prop-
erties. For energy materials and in particular for solar batteries [1],
a straightforward interpretation of such spectra is however hindered
by the intrinsic structural and occupational disorder, which includes
defects and polarons. At the same time, this also prevents their ac-
curate ab initio simulation, which would require extensive calculations
at a hybrid level of density-functional theory (DFT) in a multitude of
disordered supercells. In this work, we discuss how machine-learning
interatomic potentials trained on high-level DFT data can be used to
capture the otherwise inaccessible vibrational dynamics. We demon-
strate this approach for a two-dimensional titanium niobate featuring
partially occupied metal sites and polarons. By Monte Carlo sampling
its configurational disorder, we are able to disentangle polaronic signa-
tures and disorder induced contributions in the spectra. This reveals
how local atomic environments control polaron stability and offers in-
sights on how doping can be used to control charge retention in such
compounds.
[1] M. Rinaldi et al., J. Phys.: Mater. 8, 031003 (2025).

15 min. break

Topical Talk MM 5.5 Mon 11:45 SCH/A251
Leveraging data science technologies to enable AI-driven ma-
terials design — ∙Tilmann Hickel1,2, Han Mai2, Shankha Nag1,
Sarath Menon3, Osamu Waseda2, Liam Huber1,2, Jan Janssen2,
and Jörg Neugebauer2 — 1Bundesanstalt für Materialforschung und
-prüfung, Berlin, Germany — 2MPI für Nachhaltige Materialien, Düs-
seldorf, Germany — 3Ruhr University Bochum, Germany
The handling of materials data is of key importance in designing and
producing engineering systems. Therefore, consortia such as NFDI
MatWerk aim to develop a sustainable infrastructure for the digi-
tal representation of materials science and engineering. The goal is
to seamlessly integrate decentralized data and metadata, experimen-
tal and computational workflows, and a materials ontology to maxi-
mize interoperability and reproducibility of materials data processing.
Many AI techniques particularly benefit from structured workflows for
data generation and exploitation. For example, the generation and
application of machine-learning interatomic potentials becomes acces-
sible for many materials scientists via workflow-management systems
such as pyiron. In conjunction with semantic technologies and large-
language models they allow to design and validate novel, complex
workflows solutions in materials science. We will demonstrate these
advantages in the context of atomistic approaches to chemo-structural
couplings in metallic alloys. To this end, a high-throughput analysis
of the segregation behaviour to grain boundaries will be introduced.
Further, hydrogen solubility trends in alloys will be discussed. We will
conclude future perspectives in materials informatics.

MM 5.6 Mon 12:15 SCH/A251
Unveiling the Core of Materials Properties via SISSO and
Sensitivity Analysis: Use-case Demonstration for Perovskites
— ∙Lucas Foppa and Matthias Scheffler — The NOMAD Labo-
ratory at the Fritz Haber Institute of the Max Planck Society, Berlin,
Germany.
Interpretable AI can help reveal the physical principles governing in-
tricate material properties and functions. In particular, the sure-
independence screening and sparsifying operator (SISSO) symbolic-
regression approach identifies analytical expressions correlating a tar-
get materials performance to a small set of physical descriptive pa-
rameters, termed materials genes, selected from a vast pool of primary
features. However, the identified genes influence the SISSO models
to different degrees. Here, we use the gradient-based partial-effect
sensitivity analysis to pinpoint the most influential genes, thus en-
hancing SISSO’s interpretability and enabling deeper physical insights.
This analysis also highlights that different combinations of genes can
yield equally accurate descriptions of the correlation. The approach is
demonstrated for the bulk properties of perovskites.
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MM 5.7 Mon 12:30 SCH/A251
Towards automated calculation of phase diagrams with ma-
chine learning interatomic potentials — ∙Sarath Menon and
Ralf Drautz — ICAMS, Ruhr University Bochum, Germany
Calculation of thermodynamic properties and phase diagrams through
atomistic simulations provides valuable insights for the design and as-
sessment of new materials. Accurate phase diagram prediction re-
quires determining the Helmholtz and Gibbs free energies for relevant
phases and understanding their dependence on thermodynamic state
variables, yet conventional approaches remain technically complex and
computationally demanding.

In this work, we introduce algorithms that streamline the computa-
tion of multicomponent phase diagrams. Relevant phases are identified

using a combination of materials databases and machine learning in-
teratomic potentials, and their free energies are computed with atomic
cluster expansion potentials. Temperature and composition effects are
assessed through non-equilibrium thermodynamic integration and al-
chemical sampling, including both vibrational and configurational en-
tropy contributions.

We demonstrate the methodology by computing unary pressure-
temperature and several binary temperature-composition phase dia-
grams as well as phase equilibria in ternary materials. We provide
all corresponding computational tools. The workflows are designed to
be independent of the interatomic potential and material system, sup-
porting broader use and advancing the accessibility of thermodynamic
phase diagram computation in atomistic simulations.
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