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Topical Talk MM 9.1 Mon 15:45 SCH/A251
Atomistic simulations in the ternary Fe-O-H system: inter-
atomic potential development and applications — ∙Baptiste
Bienvenu1, Mira Todorova1, Matous Mrovec2, Ralf Drautz2,
Dierk Raabe1, and Jörg Neugebauer1 — 1Max Planck Institute
for Sustainable Materials, Düsseldorf, Germany — 2Interdisciplinary
Centre for Advanced Materials Simulation, Ruhr Universität Bochum,
Germany
Atomistic modeling of iron oxides is challenging, requiring accurate
electronic structure calculations and extensive length and time scales to
simulate elementary mechanisms such as the extraction of metallic iron
from its oxides through hydrogen-based reduction. To enable atomic
scale modeling of these and other technologically relevant processes
within the ternary Fe-O-H system (e.g., hydrogen embrittlement, wa-
ter splitting), an accurate yet efficient interatomic potential is needed,
something that is currently lacking in the literature. First, we focus on
the binary Fe-O system, for which we previously developed a robust
and transferable Atomic Cluster Expansion (ACE) machine-learning
potential with an explicit account of magnetism, to study bulk diffu-
sion and the structure and stability of various surfaces of iron oxides.
We then extend the model to include hydrogen and show that the
resulting ACE potential can faithfully reproduce key mechanisms of
the Fe-O-H system: (i) surface reactions and microstructure evolution
during hydrogen reduction of iron oxides, (ii) surface reactions of iron
and its oxides with water and (iii) hydrogen trapping, interaction with
extended defects and permeation in metallic iron.

MM 9.2 Mon 16:15 SCH/A251
Learning long-range interactions with equivariant charges —
∙Marcel F. Langer, Egor Rumiantsev, Tulga-Erdene Sodjar-
gal, Michele Ceriotti, and Philip Loche — Laboratory of Compu-
tational Science and Modeling, École Polytechnique Fédérale de Lau-
sanne, 1015 Lausanne, Switzerland
Machine-learning interatomic potentials trained on first-principles data
have become key tools across computational physics, chemistry, and
biology. Equivariant message-passing neural networks, including trans-
former variants, now deliver state-of-the-art accuracy, but their cutoff-
based graphs restrict the treatment of long-range physics such as elec-
trostatics, dispersion, and electron delocalisation. Existing long-range
corrections based on inverse-power laws of distances capture only scalar
interactions and cannot convey higher-order geometric information,
limiting their applicability. To address this, we propose the use of
equivariant (rather than scalar) charges to mediate long-range inter-
actions and build a graph neural-network architecture, LOREM [1],
around this equivariant message-passing scheme. The talk will outline
the architecture, present results on several benchmark datasets, and
discuss our work on universal long-range interatomic potentials.

[1] Egor Rumiantsev, Marcel F. Langer, Tulga-Erdene Sodjargal,
Michele Ceriotti & Philip Loche, arXiv:2507.19382 (2025).

MM 9.3 Mon 16:30 SCH/A251
Physics-informed Hamiltonian-learning for large-scale
electronic-structure calculations — ∙Martin Schwade, Shaom-
ing Zhang, Frederik Vonhoff, Frederico P. Delgado, and
David A. Egger — Physics Department, TUM School of Natural
Sciences, Technical University of Munich, 85748 Garching, Germany
Exploring the optoelectronic properties of large-scale materials systems
across a wide temperature range using conventional density functional
theory (DFT) is often prohibitively computationally expensive. Re-
cent advances in deep neural network approaches offer a promising
route to efficiently predict accurate effective Hamiltonians, yet incor-
porating temperature dependence remains challenging, largely due to
the substantial volume of training data typically required. In this work,
we introduce HAMSTER [1], a physics-informed Hamiltonian-learning
framework that achieves high accuracy with exceptional data efficiency,
requiring only a small fraction of the training data demanded by al-
ternative machine-learning models. We demonstrate the capabilities
of Hamster on several halide perovskite systems, known for their soft
lattices and strong electron-phonon coupling, and show that it reli-
ably reproduces their optoelectronic properties across a broad range of
temperatures.

[1] M. Schwade, S. Zhang, F. Vonhoff, F. P. Delgado, D. A. Egger,

Physics-informed Hamiltonian learning for large-scale optoelectronic
property prediction, arXiv:2508.20536 (2025)

MM 9.4 Mon 16:45 SCH/A251
Making equivariant graph neural network prediction of elec-
tronic structure properties fast and accurate — ∙Chen Qian1,
Valdas Vitartas1, James Kermode1, and Reinhard J. Maurer1,2

— 1University of Warwick, UK — 2University of Vienna, AT
Machine learning predictions of band structures and equivariant elec-
tronic properties, such as real-space density functional theory (DFT)
operator matrices and response properties, have the potential to ac-
celerate electronic structure prediction while avoiding expensive ab
initio calculations. However, most current models struggle to strike a
balance between prediction accuracy and inference speed. Following
our previous work on the equivariant graph neural network MACE-H
[arXiv:2508.15108], we assess the model’s performance on DFT op-
erator matrices and, subsequently, on a property based on electron-
phonon response, the electronic friction tensor. We compare its appli-
cations across various datasets. Furthermore, we analyze several exist-
ing algorithm- and hardware-based acceleration methods for the com-
putationally intensive Clebsch-Gordan tensor product in terms of accu-
racy and computational efficiency, and discuss their respective suitable
application scenarios. To this end, we present the MACE-H2 frame-
work, which features an O(3) equivariant graph neural network with
many-body expansion and suitable acceleration approaches and pro-
vides separate routines for DFT operator matrices and electron-phonon
response prediction. The model achieves high accuracy and inference
speed and is suitable for high-throughput band-structure calculations
and material discovery.

15 min. break

MM 9.5 Mon 17:15 SCH/A251
Predicting the Thermal Properties of Semiconductor Defects
with Equivariant Neural Networks — ∙Jonas A. Oldenstaedt,
Manuel Grumet, Xiangzhou Zhu, Patrick Rinke, and David
A. Egger — Physics Department, TUM School of Natural Sciences,
Technical University of Munich, 85748 Garching, Germany
Predicting temperature-dependent properties of defects in semiconduc-
tors remains computationally challenging, even with density functional
theory (DFT), due to the large supercells and long simulation times
required for the calculations. In our recent work [1], we developed an
active-learning workflow to accelerate defect calculations by combin-
ing two equivariant graph neural networks, trained using DFT calcula-
tions: MACE for predicting energies and forces needed in molecular dy-
namics, and DeepH-E3 for predicting electronic Hamiltonians needed
for computing electronic properties across many thermally-excited con-
figurations. We discuss the performance of our approach for predicting
structural and electronic properties of intrinsic defects in the prototyp-
ical semiconductor GaAs, and demonstrate calculation accuracy com-
parable to DFT at much reduced computational cost. Furthermore,
we discuss extensions of our approach to predict the thermal behavior
of defects in more complex semiconductors such as halide perovskites.

[1] X Zhu, P. Rinke and D. A. Egger, arXiv:2511.18398 (2025).

MM 9.6 Mon 17:30 SCH/A251
Learning exact exchange with symbolic regression — ∙Noah
Hoffmann, Santiago Rigamonti, and Claudia Draxl —
Humboldt-Universität zu Berlin, Berlin, Deutschland
Density functional theory (DFT) is the most widely used method for
the ab-initio prediction of material properties. It is used for computing
structural, vibrational, and electronic properties and more. One im-
portant factor influencing the accuracy of the predictions is the choice
of the exchange-correlation functional. PBE is the de-facto standard
functional because of its good results for ground-state properties at
comparatively low computational cost. The most prominent down-
side of this functional, however, is the underestimation of electronic
band gaps. Hybrid functionals like PBE0 compensate this by mixing
PBE with the non-local exact-exchange (EXX) energy. This improves
band-gaps but comes with a drastic increase in computational cost.
We apply symbolic regression (SR), a machine-learning technique, to
find inexpensive yet accurate exchange potentials as a surrogate for the
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EXX potential. This enables computationally efficient DFT calcula-
tions with an accuracy close to that of hybrid functionals. To generate
the training data for the SR models, we used the optimized effective
potential (OEP) method, in which a local approximation to the EXX
potential is constructed. The OEP method provides rather accurate
electron densities. The SR models are then validated with respect to
their numerical stability and their ability to predict band gaps. Com-
pared to PBE, the SR models show improved band gap predictions on
OEP band gaps with comparable computational cost.

MM 9.7 Mon 17:45 SCH/A251
Development of a GRACE Machine-Learning Potential for
Modeling SiC Epitaxial Growth — ∙Anders Vesti, Thomas
Hammerschmidt, and Ralf Drautz — Ruhr Universtät Bochum,
Bochum, Germany
Silicon carbide (SiC) is a highly attractive wide band-gap semicon-
ductor for power electronics due to its high breakdown field and low
on-state resistance. However, the widespread adoption of SiC-based
devices is hindered by challenges in epitaxial growth, including un-
controlled polytype switching and defect formation, which ultimately
increase production costs.

In this work, we present the development and benchmarking of a
physics-driven machine-learning interatomic potential for SiC based
on the GRACE formalism. Starting from a general-purpose founda-
tional model, we refit the potential using comprehensive C, Si, and SiC
datasets to construct a specialized model tailored for simulating SiC
epitaxy.

We validate the resulting GRACE potential against density func-
tional theory (DFT) calculations and available experimental data for
Si, C, and SiC. The developed model provides a basis for testing pro-
posed growth mechanisms in SiC epitaxy.

MM 9.8 Mon 18:00 SCH/A251
Integrating FlashMD into LAMMPS for Efficient Long-
Timestep Molecular Dynamics — ∙Johannes Spies, Filippo
Bigi, and Michele Ceriotti — Laboratory of Computational Science
and Modeling, Institut des Matériaux, École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland

FlashMD [1] is a machine-learning model that predicts future molec-
ular configurations from the current state, reducing the need to call
machine-learning interatomic potentials at every timestep and enabling
larger effective integration steps.

I present its integration into LAMMPS. The implementation acts as
a drop-in replacement for standard integrators and makes FlashMD di-
rectly available to the molecular simulation community. The interface
is modular and extensible through the metatomic ecosystem, allowing
new predictor models to be added with minimal effort.

The contribution outlines the integration strategy and initial per-
formance results, focusing on usability, extensibility, and compatibil-
ity with existing MLIP workflows. The approach provides a practical
route to accelerating large-scale atomistic simulations by reducing the
frequency of expensive potential evaluations while maintaining physi-
cal reliability.

[1] Filippo Bigi, Sanggyu Chong, Agustinus Kristiadi & Michele Ce-
riotti, arXiv:2505.19350 (2025).

MM 9.9 Mon 18:15 SCH/A251
Learning to Converge: ML-based Initialization for Fast
DFTB Simulations — ∙Maximilian L. Ach, Karsten Reuter,
and Chiara Panosetti — Fritz-Haber-Institut der MPG, Berlin
Density Functional Tight-Binding (DFTB) [1], a class of semiempiri-
cal electronic structure methods, captures the electronic structure of
a material, unlike conventional machine-learned (ML) interatomic po-
tentials, at a significantly lower computational cost compared to ab ini-
tio methods. Despite this gain in efficiency, for many processes, DFTB
does not scale favorably with the number of atoms, and simulations
of realistic material systems often represent a significant challenge due
to the associated computational overhead. A large portion of this cost
can be attributed to the difficulty of converging these calculations effi-
ciently. To address this, we introduce an ML-enhanced scheme, which
significantly accelerates and improves the DFTB self-consistent charge
convergence. Our approach leverages state-of-the-art ML methods to
provide improved initializations for DFTB calculations, hence reduc-
ing the overall cost. We demonstrate the effectiveness of this method
on small molecules and a range of materials.

[1] B. Hourahine et al., J. Phys. Chem. A 129, 5373 (2025).
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