

O 34: Catalysis and surface reactions I

Time: Tuesday 10:30–12:30

Location: HSZ/0204

O 34.1 Tue 10:30 HSZ/0204

From Global Optimization to Transition State Search: Automatic Workflow for Surface Reaction Kinetics — •HYUNWOOK JUNG¹, EMANUEL COLOMBI MANZI¹, JOHANNES T. MARGRAF^{1,2}, HENDRIK H. HEENEN¹, and KARSTEN REUTER¹ — ¹Fritz-Haber-Institut der MPG, Berlin — ²Universität Bayreuth

Reaction-barrier calculations present the major bottleneck in the systematic exploration of surface reaction networks via atomistic simulations. Each involved transition-state search introduces a high-dimensional configuration space, comprised of many initial and final state combinations, that must be explored to identify the minimum-energy pathway with the lowest activation barrier. Typically, this task is delegated to human chemical intuition as user-input to e.g. a nudged elastic band (NEB) calculation, since its automation remains a significant challenge. Here, we introduce a fully automated workflow for transition-state optimization that does not require any human intervention. Initial and final geometries are generated through global optimization and subsequent alignment, followed by an atom-mapping and index permutation to arrive at the nonequivalent transition pathways. This process still leads to a large combinatorial number of possible interpolations from which we select a tractable subset using heuristic reaction-distance metrics. We demonstrate the workflow across a range of reactions and surface combinations from the OC20NEB database and discuss its overall performance.

O 34.2 Tue 10:45 HSZ/0204

Machine-learning Driven Approach of Surface Adsorption Energy Prediction — •KARLO SOVIC and JOHANNES MARGRAF — University Bayreuth, Bayreuth, Germany

Heterogeneous catalysis is a cornerstone technology across industrial chemistry, materials science, and environmental engineering, effectively promoting and redirecting key chemical reactions in various applications. In these processes, control of surface adsorption energies is paramount for designing efficient catalysts. However, in the case of large adsorbates, the high computational cost of accurate DFT calculations limits comprehensive exploration of the corresponding potential energy surface. Machine-learning interatomic potentials offer a promising solution to this challenge. Leveraging recently reported pre-trained models, the complex interactions crucial for accurate surface chemistry can be captured with effectively via fine-tuning.

Here, a data-efficient workflow for describing the glycerol hydrodeoxygenation mechanisms leading to propanediols on M(111) and M(211) surfaces (M=Pt, Cu, Ni) is reported. With our approach, the fine-tuned model yields high-fidelity adsorption energies with near-DFT accuracy at low computational cost. Furthermore, analysis of thermodynamic properties was carried out to accurately determine the overall Gibbs free energetics of investigated reaction pathways. Based on these comprehensive insights, we propose a versatile workflow for the accelerated screening of catalytic systems, enabling the rapid construction of adsorption energy databases and exploring relevant reaction mechanisms.

O 34.3 Tue 11:00 HSZ/0204

Modeling Solvothermal Reactions at Surfaces with Machine Learning Interatomic Potentials — •MACIEJ BARADYN¹, NILS GÖNNHEIMER^{1,2}, and JOHANNES T. MARGRAF¹ — ¹University of Bayreuth, Bayreuth, Germany — ²Fritz-Haber Institute, Berlin, Germany

Dynamical processes such as adsorption, desorption and diffusion are vital elementary reactions involved in heterogeneous catalytic reactions. In solvothermal reactions, the presence of solvent molecules has significant effects on the dynamics of the adsorbates, which must displace hydration layers to diffuse or adsorb on the surface and undergo resolvation during desorption. The presence of solvent molecules also affects the interactions between surfaces and adsorbates, and can contribute to the (de-)stabilization of the adsorbed species.

In this contribution, we explore the robustness of machine learning potentials based on the MACE-MP-0 foundation model for describing dynamical processes under these conditions. This is demonstrated on a representative system of a glycerol molecule interacting with the Cu(111) surface in explicit water. Enhanced sampling methods are used to compute free energy profiles of the studied processes, and to

reflect the experimental reaction conditions under which they occur in industrial applications.

O 34.4 Tue 11:15 HSZ/0204

Converting MoS₂ to MoO₂ by Thermal Treatment Under Dilute O₂ — •ARMIN SAHINOVIC¹, JIXI ZHANG², OSAMA KHARSAH¹, MARIKA SCHLEBERGER¹, ROSSITZA PENTCHEVA¹, and RODNEY SMITH² — ¹Department of Physics and Center for Nanointegration, University of Duisburg-Essen, 47057 Duisburg, Germany — ²Department of Chemistry, University of Waterloo, ON N2L 3G1 Waterloo, Canada

The reaction of MoS₂ with O₂ at elevated temperatures introduces the risk of structural and functional degradation that decrease the lifespan of MoS₂-based devices [1]. In experiment, variable-temperature Raman measurements indicate that depending on the O₂ concentration in the environment the MoS₂ is converted into either MoO₃ or MoO₂. To elucidate the specific mechanism of this reaction, density functional theory (DFT) calculations were performed including the van der Walls dispersion correction. We show that the S-vacancy formation energy as well as O substitution energy are lowered with increasing O content. DFT calculations show that at high O contents in MoS_{2-x}O_x the P2₁/c phase is energetically preferred over the 2H-MoS₂ structure. A P-T phase diagram of the Gibbs free energy obtained from DFT shows that the partial O pressure tunes whether MoO₃ or MoO₂ is the dominant product of the reaction. We explored the band structure of multiple vacancies in MoS₂ and find additional in-gap states compared to the monovacancy. Our results offer insight into the conditions that control the degradation of MoS₂-based devices.

[1] J. Gao, et al., ACS Nano, 10 (2), 2628 (2016)

O 34.5 Tue 11:30 HSZ/0204

2D TiS₂ Nanoparticles in reductive and oxidative Atmospheres as Model (Photo-)Catalysts — •NIKO KRUSE¹, JUSTIN KLIMEK¹, AARON VON SEGGERN¹, MARTIN HEDEVANG², SERGI CAMPPOSS JARA², JEPPE VANG LAURITSEN², and LARS MORHUSEN¹ — ¹Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany — ²iNano Center, Aarhus University, Aarhus, Denmark

Sustainable materials for the thermal and photochemical utilization of (waste) carbon dioxide (CCU) become more and more demanded.[1] Titanium-based 2D materials such as TiS₂ can directly harvest sunlight and have demonstrated high CO₂ conversion activity.[2] To illuminate atomistic structure-property relationships of such catalytic systems, we present a model system consisting of 2D TiS₂ nanoparticles on Au(111) and TiO₂ (110) surfaces, rendering it suitable for atomic-level microscopy and spectroscopy. A direct synthesis route was developed by Ti metal evaporation in the presence of benign organic S precursors.[3] The resulting materials were characterized by combined STM, XPS, and NEXAFS experiments, along with DFT calculations.[4] We demonstrate the substrate-dependent structure and compositional detail of the nanoparticles and highlight the chemical potential of S as the relevant shape descriptor. In addition, the surface chemistry of 2D TiS₂ nanoparticles in reactive atmospheres will be presented, highlighting the strong stability even in oxidative & reductive conditions. [1] R. Guil-López, N. M. et al., Materials 2019, 12, 3902. [2] A. Al-Jabour, et al., ACS Catal. 2020, 10, 66. [3] F. Besenbacher et al., J. Catal. 2021, 403, 4. [4] N. Kruse et al., Small 2025, 21, e06023.

O 34.6 Tue 11:45 HSZ/0204

In situ X-ray Imaging of PtPd Core-Shell Nanoparticles under Methane Oxidation Conditions — •LYDIA J. BACHMANN^{1,2}, THOMAS F. KELLER^{1,2}, IVAN A. VARTANYANTS¹, and ANDREAS STIERLE^{1,2} — ¹Deutsches Elektronen-Synchrotron DESY — ²University of Hamburg

Due to the high global warming potential of methane, the release of any methane into the atmosphere needs to be avoided. Therefore, catalysts are used for the emission control. Common catalyst nanoparticles (NPs) for methane oxidation consist of Pd or Pt. Combining them allows to build more stable NPs. Since the surface chemical composition is crucial for the activity, segregation and mixing processes need to be taken into account. In this study we successfully tuned the initial chemical composition of one core-shell and one partially alloyed NP. We confirmed these elemental distribution by Bragg

coherent diffraction imaging (BCDI). During *in situ* BCDI measurements under methane oxidation at temperatures between 320°C and 560°C, Pt segregated to the {111} oriented facets of the initial core-shell NP. Conversely, the initially partially alloyed NP did not exhibit such facet-dependent segregation, but rather observed the formation of a Pd core, Pt shell structure at 680°C. Since the initial Pt core, Pd shell NP showed Pd-Pt mixing at 620°C, we hypothesize that this NP would form such an inverted core-shell structure under higher temperatures as well. These results demonstrate opportunities for systematically investigating promising core-shell NPs and their catalytic activity, offering valuable insights for the design of advanced catalysts.

O 34.7 Tue 12:00 HSZ/0204

The mechanism and Rate-Determining Step of Catalytic Ammonia Oxidation on Pd(332) at High Temperatures
 — •JAN FINGERHUT¹, JESSALYN DEVINE², RONGRONG YIN³, MARK BERNARD², ALICE BREMER⁴, DMITRIY BORODIN², KAI GOLIBRZUCH², THEOFANIS KITSOPoulos⁵, DANIEL AUERBACH², HUA GUO³, and ALEC WODTKE² — ¹Leiden Institute of Chemistry, Leiden, the Netherlands — ²Max-Planck-Institute for Multidisciplinary Science, Göttingen, Germany — ³University of New Mexico, Albuquerque, USA — ⁴Georg-August-Universität, Göttingen, Germany — ⁵University of Southern Mississippi

Despite its immense practical importance in industrial production of nitric acid, the mechanisms of catalytic ammonia oxidation on platinum group metals remain controversial. In this work, we employ velocity-resolved kinetics to study ammonia oxidation on a model Pd(332) catalyst between 600 and 700 K. We obtain the temporal evolution of gas-phase reactants (NH₃), products (NO, H₂O) and - with the help of femtosecond laser-induced desorption - of a reaction intermediate, N*. The reaction exhibits the prompt appearance of H₂O and the delayed formation of NO; the rate-determining step is the re-

action N* + O* → N*O occurring at step sites. This means that N* is the longest-lived reaction intermediate, an insight that helps explain formation of byproducts like N₂ and N₂O. We present a mechanism that explains all experimental observations, based on transition-state theory calculations and using input from density functional theory. We also show that N*O desorption is accelerated by coadsorbed oxygen.

O 34.8 Tue 12:15 HSZ/0204

Promoting Role of Isolated Surface Hydroxyls on Selective Dehydrogenation of 2-Propanol over Co₃O₄ Catalyst —

•JAN SMYCZEK¹, PATRICK HUBERT¹, HAUKE SCHEELE², CARSTEN SCHRÖDER¹, SHARIF NAJAFISHIRTARI², PAUL KOHLMORGEN¹, MALTE BEHRENS², and SWETLANA SCHAUERMANN¹ — ¹Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany — ²Institute of Inorganic Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany

This study investigates the catalytic decomposition of 2-propanol to acetone over Co₃O₄ catalysts, examining both powdered materials under ambient pressure and model Co₃O₄(111) surfaces in ultrahigh vacuum. Water pretreatment at elevated temperatures substantially enhanced acetone formation rates. Scanning tunneling microscopy and infrared spectroscopy revealed that high-temperature water pretreatment creates isolated hydroxyl groups (O_sH) involving lattice oxygen atoms, whereas low-temperature deposition forms an extended, partly dissociated OH/H₂O network layer. The role of isolated O_sH groups can most likely be attributed to their function as hydrogen acceptors for H atoms leaving from either 2-propanol or the propoxy intermediate. Critically, dissociation occurs only with isolated O_sH species, not within the extended OH/H₂O network, which nearly completely suppresses both abstraction steps. The isolated O_sH groups function as efficient hydrogen acceptors, proving substantially more effective than adsorbate-free lattice oxygen.