

TT 25: f-Electron Systems

Time: Tuesday 9:30–12:30

Location: HSZ/0101

TT 25.1 Tue 9:30 HSZ/0101

Strong correlations in rare earth intermetallic compounds — •PAYEL SHEE¹, CHIA JUNG YANG², TANAYA HALDER¹, NAINISH TICKOO¹, SHISHIR KUMAR PANDEY³, ASHIS KUMAR NANDY¹, RUTA KULKARNI⁴, ARUMUGAM THAMIZHAVEL⁴, MANFRED FIEBIG², ANAMITRA MUKHERJEE¹, and SHOVON PAL¹ — ¹National Institute of Science Education and Research, Bhubaneswar, India — ²ETH Zurich, Zurich, Switzerland — ³Artificial Intelligence for Science Institute, Beijing, China — ⁴Tata Institute of Fundamental Research, Mumbai, India

In rare-earth intermetallic compounds, the strong correlations between magnetic ordering and the crystal electric field (CEF) are essential to understand their many-body ground states. The CEF excitations at a low energy scale becomes crucial to study as it leaves its fingerprints on the exotic magnetic behaviour in rare-earth intermetallics. Using THz time-domain spectroscopy, we have directly probed the underlying CEF states in two distinct material system: a prototype Kondo lattice system (CeAg_2Ge_2) and a metallic ferromagnet (PrSi). In CeAg_2Ge_2 , we elucidate the low lying CEF state to strongly couple with the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, evidenced by a distinct blueshift in the transition frequency [1]. However, in PrSi , we identify a prominent increase in the population of the higher CEF state at the curie temperature, showcasing an intricate interplay between CEF and magnetic ordering in these strongly correlated systems[2].

[1] P. Shee et al., Phys. Rev. B 109, 075133 (2024)

[2] P. Shee et al. manuscript submitted to Advanced Science.

TT 25.2 Tue 9:45 HSZ/0101

Rare-earth nitrides: nitrogen stoichiometry, 4f valence, and the role of the rare-earth 5d states in SmN — ANNA MELÉNDEZ-SANS¹, VANDA M. PEREIRA¹, CHUN-FU CHANG¹, CHANG-YANG KUO^{1,2,3}, CHIEN-TE CHEN², LIU HAO TJENG¹, and •SIMONE G. ALTENDORF¹ — ¹Max Planck Institute for Chemical Physics of Solids, Dresden, Germany — ²National Synchrotron Radiation Research Center, Hsinchu, Taiwan — ³Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan

We report on the influence of nitrogen stoichiometry on the electronic structure of epitaxial rare-earth nitride (REN) thin films grown by molecular beam epitaxy under ultra-high vacuum base conditions using moderate growth conditions, i.e., slow deposition rates, and moderate temperatures and pressures. The systematic variation of the growth parameters enables precise control of the nitrogen content and the preparation of near-stoichiometric, well-ordered REN thin films [1,2]. Using samarium nitride as a critical model system, we present a combined x-ray photoelectron spectroscopy and x-ray absorption spectroscopy study that reveals the dependence of the rare-earth valence and electronic structure on the nitrogen content. Our findings suggest that the RE 5d states may play a crucial role in the nitrogen-deficient samples, as the empty states can stabilize the RE 4f valence by hosting the extra electrons.

[1] V. M. Pereira et al., Phys. Rev. Mater. 7, 124405 (2023)

[2] A. Meléndez-Sans et al., Phys. Rev. B 110, 045120 (2024)

TT 25.3 Tue 10:00 HSZ/0101

Terahertz Signatures of Coupled Topological and Heavy-Fermion States in SmB_6 — •ZEKAI CHEN, DEBANKIT PRIYADARSHI, ERIK W. DE VOS, and MANFRED FIEBIG — Department of Materials, ETH Zurich, Zurich, Switzerland.

We present a THz time-domain spectroscopy study that resonantly probes the conducting surface state of the topological Kondo insulator samarium hexaboride (SmB_6). Previous work on Kondo insulators has shown that the Kondo quasiparticles disintegrate near a quantum critical point (QCP) following THz radiation, leading to a delayed echo-pulse-like signal in the time domain [1]. In contrast to these materials, SmB_6 exhibits an additional in-gap state that is hypothesized to be related to its topological surface conductivity. In the presented experiment, this in-gap state is resonantly probed with THz radiation. Our results show the aforementioned echo-like signal at 3 ps, which matches the theoretical surface Kondo temperature [2]. The link between the topological surface state and the Kondo effect is corroborated by the observation of a transition towards negative optical conductivity of the instantaneous THz reflection, which emerges on the same temperature

scale as the echo-response. Our results provide insight into the emergence of a coupling between the in-gap surface state and the underlying correlated Kondo physics in SmB_6 .

[1] Nature Physics 14, 1103 (2018)

[2] Physical Review Letters, 114, 177202 (2015)

TT 25.4 Tue 10:15 HSZ/0101

Observation of 5f valence fluctuations in $\text{UPd}_2\text{Cd}_{20}$ by high-resolution XAS — •JINDŘICH KOLORENČ — Institute of Physics (FZU), Czech Academy of Sciences, Prague, Czech Republic

The regime of valence fluctuations, known from anomalous rare-earth systems, has not yet been identified by microscopic techniques in any uranium compound. It was only suggested in a few of them on the basis of thermodynamic measurements (such as the magnetic susceptibility) and their similarity to the behavior of rare-earth valence fluctuators. Such arguments, however, are hardly unequivocal. We present uranium L_3 and M_4 x-ray absorption spectra taken on $\text{UPd}_2\text{Cd}_{20}$, which is a heavy-fermion *antiferromagnet*. Although it has only one type of uranium site in its primitive cell, the spectra obtained in the high-energy-resolution fluorescence-detection mode display two edges, each associated with a different valence state, $5f^2$ and $5f^3$. Moreover, the shape of the M_4 spectrum is well approximated by a combination of UCl_3 ($5f^3$) and UCl_4 ($5f^2$) spectra. This suggests $5f^2 \leftrightarrow 5f^3$ fluctuations on a timescale longer than the characteristic time of the spectroscopy technique. Unlike 4f systems, in which such fluctuations typically lead to a *destruction of magnetism* due to one of the involved $4f^n$ configurations being non-magnetic, the $5f^2$ and $5f^3$ states are both magnetic, allowing for a magnetic ordering in the fluctuating state.

This contribution is a result of a collaboration between Niigata University, Japan Atomic Energy Agency, Kyushu University, Japan Synchrotron Radiation Research Institute, Helmholtz-Zentrum Dresden-Rossendorf, ESRF in Grenoble, and Charles University in Prague.

TT 25.5 Tue 10:30 HSZ/0101

Stoichiometry control of the magnetic structure and crystalline electric field effects in the Kondo lattice CeAlGe — •SOOHYEON SHIN and YIXI SU — Juelich Center for Neutron Science at MLZ, Lichtenbergstrasse 1, Garching 85748, Germany

CeAlGe crystallizes in the LaAlSi -type tetragonal structure, where spatial inversion symmetry is broken. This system is expected to host Weyl fermions near a Fermi surface that becomes more stable when time-reversal symmetry is broken. The magnetic ground state and associated topological properties of CeAlGe are known to depend sensitively on chemical stoichiometry. For instance, crystals grown by the flux method typically contain 5–15% excess Al on the Ge site and exhibit commensurate antiferromagnetic order below $T=5.1$ K. In contrast, crystals prepared by the floating-zone method under 30 bar of Ar gas yield stoichiometric compositions and display incommensurate order below $T=4.4$ K, where topological Hall effects are induced by external magnetic fields.

In this presentation, we report recent neutron-scattering experiments. Small-angle scattering reveals the emergence of additional incommensurate magnetic ordering associated with Al substitution. Furthermore, time-of-flight measurements suggest the presence of a magnetoelastic bound state between the first excited crystal-field level and an optical phonon mode near 17 meV. We will discuss the implications of this magnetoelastic bound state for the magnetic structures in CeAlGe .

TT 25.6 Tue 10:45 HSZ/0101

Acoustic signatures of field-induced electronic topological transitions in YbNi_4P_2 — •JÉRÉMY SOURD¹, E.O. ELJAOUHARI², B.V. SCHWARZE¹, K. KLIEMT³, C. KRELLNER³, F. HUSSTEDT^{1,4}, J. WOSNITZA^{1,4}, S. ZHERLITSYN¹, and G. ZWICKNAGL^{2,5} — ¹Dresden High Magnetic Field Laboratory (HLDemFL), HZDR, Germany — ²Institut für Mathematische Physik, TU Braunschweig — ³Physikalisches Institut, Johann Wolfgang Goethe-Universität, Frankfurt am Main — ⁴Institut für Festkörper- und Materialphysik, TU Dresden — ⁵Max Planck Institute for Chemical Physics of Solids, Dresden

The Fermi surface is a central concept to elaborate the physical properties of correlated electron systems. While resulting from the pre-

cise chemistry of a given material through its crystal and electronic structures, the Fermi-surface shape and topology can evolve drastically upon varying a control parameter leading to an electronic-topological transition (ETT). In heavy-fermion systems the strong electronic correlations generate renormalized flat bands close to the Fermi level, leading to effective Fermi energies of the order of 10 T. Thus, in these systems the Zeeman energy from moderate magnetic field is enough to induce an ETT, as observed for example in YbNi_4P_2 . We used acoustic waves in order to probe the sequence of ETT in YbNi_4P_2 , by performing ultrasound experiments at low temperature. By comparing the observed anomalies of the sound velocity for different acoustic modes, we show how ultrasound permits to better explore the reciprocal space structure of the ETTs in YbNi_4P_2 .

15 min. break

TT 25.7 Tue 11:15 HSZ/0101

Tuning quadrupolar order in YbRu_2Ge_2 using uniaxial stress — •ARINDAM GHARA¹, CAITLIN I. O'NEIL¹, ELENA GATI^{1,2}, YOUSHENG LI³, NUBIA CAROCA-CANALES¹, CHRISTOPH GEIBEL¹, HILARY NOAD¹, and MICHAEL NICKLAS¹ — ¹Max Planck Institute for Chemical Physics of Solids, Dresden, Germany — ²Goethe University Frankfurt, Germany — ³National Taiwan University, Taiwan

Multipolar order has gained renewed attention due to its close connection with nematicity, altermagnetism, and quantum criticality. YbRu_2Ge_2 exhibits a ferroquadrupolar transition at $T_Q = 10.2$ K accompanied by a tetragonal-to-orthorhombic structural distortion [1,2]. Experimental studies [2] have proposed a B_{1g} order parameter for the ferroquadrupolar ground state. According to theoretical work [3], a transverse field, such as a magnetic field along the c axis or a B_{2g} stress, can drive YbRu_2Ge_2 towards a quantum critical point. This makes YbRu_2Ge_2 a model system for studying quadrupolar fluctuations under symmetry-resolved tuning parameters.

We used these tuning parameters to map the phase diagram of YbRu_2Ge_2 via resistance and Young's modulus measurements. While the data under c -axis magnetic field behave as expected for a transverse field, the response to B_{2g} stress is unexpected: the resistivity anomaly broadens, whereas the Young's modulus anomaly stays sharp. This behaviour challenges the assumption that B_{2g} stress acts purely as a transverse field.

[1] Jeevan *et al.*, *Phys. Rev. B* **73**, 020407 (2006)

[2] Rosenberg *et al.*, *PNAS* **116**, 7232 (2019)

[3] Maharaj *et al.*, *PNAS* **114**, 13430 (2017)

TT 25.8 Tue 11:30 HSZ/0101

$\text{Yb}_5\text{Rh}_6\text{Sn}_{18}$: a valence fluctuating system with ultra-low thermal conductivity — •OLEKSANDR BOLIELY¹, VOLODYMYR LEVYTSKYI¹, KRISTINA O. KVASHNINA², ANDREAS LEITHE-JASPER³, and ROMAN GUMENIUK¹ — ¹Institut für Experimentelle Physik, TU Bergakademie Freiberg, 09596 Freiberg, Germany — ²Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01314 Dresden, Germany — ³Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany

$\text{Yb}_5\text{Rh}_6\text{Sn}_{18}$ obtained by high-frequency melting of elemental metals crystallizes with an unique structural configuration closely related to the $\text{Yb}_3\text{Rh}_4\text{Sn}_{13}$ Remeika prototype. An important feature of this structure is that the small Sn1-atoms reside within enlarged Frank-Kasper polyhedra thus, possessing potential for a "rattling" motion. X-ray absorption spectra of $\text{Yb}_5\text{Rh}_6\text{Sn}_{18}$ indicate Yb-ions to be in the intermediate valence state (IVS), i.e. switching between the $4f^{13}$ (Yb^{3+}) and $4f^{14}$ (Yb^{2+}) configurations. In agreement with this finding temperature dependence of magnetic susceptibility reveals a well pronounced maximum. Both Hall and Seebeck coefficients indicate the change of charge carrier type from electrons to holes between 120 and 220 K. Together with electrical resistivity and theoretical DFT calculations these effects confirm $\text{Yb}_5\text{Rh}_6\text{Sn}_{18}$ to be a metal, which disobeys the free electron gas theory. The ultra-low thermal conductivity is attributed to the appearance of phonon resonance as well as to the "rattling" motion of Sn1 atoms in the studied structure.

TT 25.9 Tue 11:45 HSZ/0101

Antiferromagnetic order and spin excitations in HoInCu_4 — •O. STOCKERT¹, X. BORALEY², J. LASS², R. SIBILLE², Ø. S. FJELLVÅG^{2,3}, S. MOODY², A. M. LÄUCHLI^{2,4}, V. FRITSCH⁵, and D. G. MAZZONE² — ¹Max-Planck-Institut CPFS, Dresden — ²Paul-

Scherrer-Institut, Villigen, Switzerland — ³Institute for Energy Technology, Kjeller, Norway — ⁴École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland — ⁵Universität Augsburg, Augsburg

Magnetic frustration quite often leads to novel quantum phases in condensed matter physics. Here, we focus on the intermetallic compound HoInCu_4 with a face-centered cubic structure being prone to frustration.

We performed extensive elastic and inelastic neutron scattering on HoInCu_4 to unravel the magnetic structure and to study the underlying exchange interactions [1,2]. Below 0.76 K HoInCu_4 orders in a type-III AF structure with a reduced ordered moment and partially disordered Ho spins. Enhanced spin fluctuations due to frustration are detected as a diffuse signal, even well inside the ordered state. In the magnetic field polarized state the spin excitations and the magnetic diffuse scattering can be well modeled using linear spin-wave theory yielding a consistent set of nearest and next-nearest neighbor interactions. In contrast, in zero magnetic field spin-wave theory fully fails to describe the overdamped spin excitations in the AF ordered state. All these findings emphasize the importance of frustration in HoInCu_4 .

[1] O. Stockert *et al.*, *Phys. Rev. Res.* **2**, 013183 (2020).

[2] X. Boralev *et al.*, *Phys. Rev. Lett.* **135**, 046702 (2025).

TT 25.10 Tue 12:00 HSZ/0101

Single crystal growth and characterization of EuMn_2Si_2 and EuMn_2Ge_2 — •JANINA STRAHL¹, TOM GERNITKE^{1,2}, KRISTIN KLIEMT¹, KURT KUMMER², and CORNELIUS KRELLNER¹ — ¹Institute of Physics, Goethe-University, Frankfurt (Main), Germany — ²European Synchrotron Radiation Facility (ESRF), F-38043 Grenoble Cedex, France

EuMn_2Si_2 exhibits a thermally driven valence transition of the europium ions from Eu^{3+} at low temperatures to $\text{Eu}^{2.5+}$ at high temperatures [1]. The isoelectronic and isostructural substitution of silicon with germanium leads to a stabilization of the divalent state of Eu in EuMn_2Ge_2 with reported ferromagnetic Eu ordering below 13 K [2]. Both rare earth intermetallic 122 compounds crystallize in the tetragonal ThCr_2Si_2 structure type and show antiferromagnetic ordering of the manganese sublattices above room temperature. In literature [1,2], additional Mn spin-reorientation transitions in polycrystalline EuMn_2Si_2 samples at low temperatures were observed. In this contribution, we present the single crystal growth and physical properties of both compounds. We found antiferromagnetic ordering of the Eu ions in single crystalline EuMn_2Ge_2 below 10.4 K. Furthermore, there is evidence that previously reported Mn reorientation transitions are absent in pure EuMn_2Si_2 single crystals, and a valence crossover occurs between 350-530 K.

[1] M. Hofmann *et al.*, *Phys. Rev. B* **69**, 174432 (2004)

[2] I. Nowik *et al.*, *Phys. Rev. B* **55**, 3033 (1997)

TT 25.11 Tue 12:15 HSZ/0101

Polaronic quasiparticles in the valence-transition compound $\text{TmSe}_{1-x}\text{Te}_x$ — •CHUL-HEE MIN^{1,2}, SIMON MÜLLER³, LENART DUDY⁴, MICHAEL HEBER⁵, WOOJAE CHOI⁶, JONATHAN DENLIGNER⁷, CHANG JONG KANG⁸, MATTHIAS KALLÄNE², NILS WIND⁵, MARKUS SCHOLZ⁵, CHRISTOPH SCHLUETER⁵, ANDREI GLOSKOVSKII⁵, EMILE RIENKS⁸, VLADIMIR HINKOV³, HENDRIK BENTMANN¹, YONG SEUNG KWON⁶, FRIEDRICH REINERT³, HYEONG DO KIM⁹, and KAI ROSSNAGEL^{2,5} — ¹FYI, NTNU, Norway — ²IEAP, CAU Kiel, Germany — ³Uni. Würzburg, Germany — ⁴SOLEIL, France — ⁵DESY, Germany — ⁶DGIST, South Korea — ⁷ALS, USA — ⁸BESSY II, Germany — ⁹PAL, South Korea

Exotic quasiparticle states have been proposed in mixed-valent compounds exhibiting valence transitions. However, clear spectroscopic evidence identifying these states has remained elusive. Using synchrotron-based photoemission spectroscopy, we have probed the Tm 3d and 4f emissions in $\text{TmSe}_{1-x}\text{Te}_x$, where a semimetal-insulator transition occurs. Our photoemission results reveal a novel quasiparticle excitation in the semimetallic phase: a Holstein polaron. This local lattice distortion, induced by 4f photohole, is surprising in a metallic system where efficient screening is expected. We interpret this observation as evidence that, in heavy fermion systems, the conduction electrons' screening response is slower than the characteristic atomic distortion. Our finding underscores the critical role of electron-phonon coupling, which necessitates an extension of the standard Periodic Anderson Model.

[1] Phys. Rev. Lett. **135**, 186501 (2025)