

EP 7: Poster Session

Time: Wednesday 16:15–18:45

Location: Redoutensaal

EP 7.1 Wed 16:15 Redoutensaal

Towards Ultra-Broadband Terahertz Time-Domain Spectroscopy for Space Research — •BRUNO BROER^{1,2}, DOMINIC AZIH^{1,2}, YOOKYUNG HA^{2,1}, JONAS WOESTE^{1,2}, EMMA KINNE^{1,2}, SERGEY PAVLOV², OLIVER GUECKSTOCK³, TOM SEIFERT^{3,4}, NIKOLA STOJANOVIC², TOBIAS KAMPFRATH^{3,4}, and MICHAEL GENSCH^{1,2} — ¹Technical University of Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany — ²German Aerospace Center (DLR), Institute of Space Research, Rutherfordstr. 2, 12489 Berlin, Germany — ³Free University Berlin, Arnimallee 14, 14195 Berlin, Germany — ⁴TeraSpinTec GmbH, Lüneburger Str. 26, 10557 Berlin, Germany

Femtosecond lasers have in recent years been shown to be compact, robust and space qualified, in particular regarding their radiation hardness [1]. This opens up opportunities for compact Terahertz Time-Domain Spectroscopy (THz TDS) systems to detect gases (e.g. CO₂) and solids on planetary missions. By avoiding cryogenically cooled direct detectors and bulky opto-mechanics of conventional instruments e.g. in Fourier Transform Infrared systems, THz TDS becomes of high interest for in-situ sensing applications requiring robustness, compactness and high energy/mass efficiency. Here we show our progress en route to a THz TDS setup for space applications with a bandwidth of over 30 THz and a frequency resolution of below 100 GHz.

[1] J. Lee, K. Lee, Y. Jang et al. "Testing of a femtosecond pulse laser in outer space" *Scientific Reports* 4, 5134 (2014)

EP 7.2 Wed 16:15 Redoutensaal

Time-Domain Spectroscopy Techniques for the Identification of Minerals and Gases in Space Research — •EMMA KINNE^{1,2}, YOOKYUNG HA^{1,2}, SERGEY G. PAVLOV², JONAS WOESTE^{1,2}, DOMINIC AZIH^{1,2}, BRUNO BROER^{1,2}, NIKOLA STOJANOVIC², and MICHAEL GENSCH^{1,2} — ¹Technische Universität Berlin, Berlin, Germany — ²DLR Institute of Space Research, Berlin, Germany

On planetary missions, the identification of gases and the characterization of solids by their spectroscopic fingerprint are typically performed by infrared and/or Raman spectrometers. The advent of space-qualified femtosecond lasers enables to perform the same task by a new class of time-domain techniques which have the potential to be much more robust, compact and sensitive. Methods such as Time-Domain Raman Spectroscopy (TDRS) and Rotational Coherent Raman Scattering (RCRS) retrieve Raman-active fingerprints of solids and molecules, respectively. Recently, we reported TDRS to be a viable alternative to continuous wave Raman spectroscopy in identifying minerals [1]. Here, we demonstrate that the same experimental setup, that is used for TDRS, can detect molecular species via RCRS. We report measured rotational revival signatures from N₂ and O₂ at room temperature and atmospheric pressure. Simulations using the LIMA software further show that this setup could detect a wide range of molecular species under extraterrestrial conditions.

[1] Y. Ha, et. al., Time-Domain Raman Spectroscopy: An Emerging Technique in Space Exploration? *J. Raman Spectrosc.* 56 (2025)