

P 23: Low Pressure Plasmas IV

Time: Friday 11:00–11:30

Location: KH 01.012

P 23.1 Fri 11:00 KH 01.012

Double probe calibration in different plasma regimes using microwave cavity resonance spectroscopy — •ANDREAS PETERSEN¹, JOHANNA VOGT², JENS OBERRATH², JULIAN HELD³, and FRANKO GREINER^{1,4} — ¹Institute of Experimental and Applied Physics, Kiel University, Kiel, Germany — ²South Westphalia University of Applied Sciences, Soest, Germany — ³Eindhoven University of Technology, Eindhoven, Netherlands — ⁴KiNSIS, Kiel, Germany

Probe-based diagnostics remain a cornerstone of plasma characterization, offering spatially resolved measurements through precise positioning of the exposed probe tip. But factors like RF compensation and surface contamination can complicate matters. Also, the correct ion current model must be selected: while the ABR theory assumes collisionless, non-orbiting ions, the BRL framework incorporates ion orbiting and weak collisionality. For strongly collisional regimes the modified Talbot-Chou model is an option. This makes model selection nontrivial. We present a comparative study of simultaneous double-probe and microwave cavity resonance spectroscopy (MCRS) measurements, because MCRS is very sensitive and can detect changes in electron density of the order of 10^{10}m^{-3} . These results pave the way for future applications in nanodusty and electronegative plasma systems.

We gratefully acknowledge funding by Deutsche Forschungsgemeinschaft (DFG), Project No. 531667910

P 23.2 Fri 11:15 KH 01.012

Numerical studies on extreme-ultraviolet-induced low density hydrogen plasmas — •ADELIND ELSHANI¹, AHMET AKSOY¹, LINUS NAGEL¹, SASCHA BROSE^{1,2}, ROLF WESTER², ANNICKA BONHOFF¹, and CARLO HOLLY^{1,2} — ¹RWTH Aachen University TOS, Aachen — ²Fraunhofer Institute for Laser Technology ILT, Aachen

The interaction of extreme-ultraviolet (EUV) radiation with low-pressure hydrogen gas induces a low-density hydrogen plasma. Understanding the underlying chemical and dynamic processes is essential but complicated due to plasma formation complexity and correlated influencing factors during experiments. Dedicated stand-alone setups using discharge-produced plasma EUV radiation sources allow for reduction of experimental complexity and simplified setups. In addition, experimental parameters can be systematically varied and adjusted leading to controllable boundary conditions. As a result, fundamental dependencies with mostly unbiased parameters can be experimentally investigated, covering intensity or power optimized exposures at 13.5 nm, with narrow to broadband spectral distributions in hydrogen gas atmospheres. An according modeling framework, adaptable to these setups is developed to link the experimental data with theoretical models. The combination of experiment and simulation enables an in-depth understanding of the EUV-induced hydrogen plasma formation. The presentation covers the key components of the modeling framework based on a kinetic approach, along with an analysis of the electron dynamics for high-intensity EUV exposure configurations.