

P 25: Plasma Wall Interaction IV

Time: Friday 11:30–12:00

Location: KH 01.012

P 25.1 Fri 11:30 KH 01.012

Improving The Sinterability Of WfW By Alloying —
 •CHONGYANG LIU^{1,4}, JAN WILLEM COENEN¹, YIRAN MAO¹, MEHRDAD MOUSAPOUR¹, TOMISLAV DAMJANOVIC¹, CHRISTIAN LINSMEIER^{1,2}, and MARTIN BRAM^{3,4} — ¹Forschungszentrum Jülich GmbH, Institute of Fusion Energy and Nuclear Waste Management, 52425 Jülich, Germany — ²Ruhr-Universität Bochum, Faculty of Physics and Astronomy, Bochum 44801, Germany — ³Forschungszentrum Jülich GmbH, Institute of Energy Materials and Devices, 52425 Jülich, Germany — ⁴Ruhr-Universität Bochum, Faculty of Mechanical Engineering, Bochum 44801, Germany

In this work, tungsten fiber*reinforced tungsten (Wf/W) composites were modified by adding vanadium (V) to enhance densification while maintaining fiber ductility. W-V powders were produced by mechanical alloying and consolidated by FAST/SPS under varied V contents, temperatures, and holding times. Density was measured by the Archimedes method, and SEM/EDX analyzed microstructure and V diffusion. Three-point bending and fracture observations evaluated fiber behavior. The results show that small V additions, together with reduced sintering temperature and holding time, significantly improve matrix densification while keeping the fibers predominantly ductile. In contrast, higher temperatures or longer holding promote excessive V diffusion and fiber embrittlement. Overall, V alloying with optimized FAST/SPS parameters offers an effective route to improve Wf/W densification without sacrificing fiber integrity.

P 25.2 Fri 11:45 KH 01.012

Design-by-Analysis of Tungsten Fibre-Reinforced Tungsten for Divertor Plasma-Facing Components —
 •TOMISLAV DAMJANOVIC^{1,2}, JAN WILLEM COENEN¹, YIRAN MAO¹, MEHRDAD MOUSAPOUR¹, CHRISTIAN LINSMEIER^{1,2}, and UTE WILKINSON³ — ¹Forschungszentrum Jülich GmbH, Institut of Fusion Energy and Nuclear Waste Management - Plasmaphysics (IFN-1), Jülich 52425, Germany — ²Ruhr-Universität Bochum, Faculty of Physics and Astronomy, Bochum 44801, Germany — ³Dr. Fritsch Sondermaschinen GmbH, Fellbach 70736, Germany

Tungsten remains the leading material for plasma-facing components in fusion devices, yet its brittleness, limited thermal shock resistance, and irradiation-induced degradation raise concerns for long-term divertor operation. Embedding ductile tungsten fibres into a tungsten matrix (Wf/W) offers a route toward enhanced toughness and improved damage tolerance.

This contribution presents a design-by-analysis approach to optimize Wf/W composites for divertor-relevant thermo-mechanical loads. The microscale behavior is represented through homogenized material models using rule-of-mixtures and Mori-Tanaka schemes. These effective properties feed into a mesoscale description based on classical laminate theory to explore fiber volume fractions, orientations, and stacking configurations. Optimized composite layouts are then assessed in component-level finite-element simulations with realistic boundary conditions representative of divertor operation.