DPG Phi
Verhandlungen
Verhandlungen
DPG

Mainz 2026 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

Q: Fachverband Quantenoptik und Photonik

Q 47: Quantum Technologies – Sensing II

Q 47.3: Talk

Thursday, March 5, 2026, 11:30–11:45, P 5

Part 1: Optically Addressable Molecular Spins at 2D surfaces — •YanTung Kong, XuanKai Zhou, Cheuk Kit Cheung, Ruoming Peng, and Jörg Wrachtrup — 3. Physikalisches Institut, University of Stuttgart, 70569 Stuttgart, Germany

Optically addressable surface spins constitute a long-sought goal in quantum sensing, offering a pathway to probe quantum phenomena with atomic-scale precision. Here, we introduce a novel architecture in which pentacene spin molecules are anchored onto two-dimensional hexagonal boron nitride (hBN) and self-align with the underlying lattice. This configuration yields robust optically detected magnetic resonance (ODMR) signals from 4 K to room temperature. We further demonstrate ensemble spin sensing of Fe3GaTe2 (FGT), as well as controlled positioning of Pc molecules. This work represents the first demonstration of a surface molecular spin sensor that integrates long coherence, optical addressability, and interfacial functionality, thereby enabling quantum sensing capabilities beyond those of conventional solid-state spin systems.

Keywords: Quantum sensing; 2D material; hBN; Molecular Qubit; Lifetime-Limit Coherence

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2026 > Mainz