

Q 48: QuanTour IV – Building Blocks

Inspired by QuanTour, the traveling quantum-dot light source, the sessions QuanTour I-V focus on the physics of quantum light generation in solid-state systems and applications in quantum networks.

Time: Thursday 11:00–13:00

Location: P 7

Invited Talk

Q 48.1 Thu 11:00 P 7

Quantum teleportation with remote quantum dots in a metropolitan hybrid quantum network — A. LANEVE¹, G. RONCO¹, M. BECCACECI¹, F. SALUSTI², N. CLARO-RODRIGUEZ², G. DE PASCALIS¹, E. SCHÖLL², L. HANSCHKE⁴, T. M. KRIEGER³, Q. BUCHINGER⁵, S. F. COVRE DA SILVA⁶, S. STROJ⁷, S. HÖFLING⁵, T. HUBER-LOYOLA⁸, M. A. USUGA CASTANEDA⁹, G. CARVACHO¹, N. SPAGNOLO¹, •M. B. ROTA¹, F. BASSO BASSET¹⁰, A. RASTELLI³, F. SCIARRINO¹, K. D. JÖNS², and R. TROTTA¹ — ¹Sapienza Università di Roma, Italy — ²Paderborn University, Germany — ³Johannes Kepler University, Austria — ⁴Technical University of Munich, Germany — ⁵University of Würzburg, Germany — ⁶Universidade Estadual de Campinas, Brazil — ⁷Vorarlberg University of Applied Sciences, Austria — ⁸Karlsruhe Institute of Technology, Germany — ⁹Single Quantum B.V., Delft, The Netherlands — ¹⁰Politecnico di Milano, Italy

We demonstrate the first all-photonic quantum teleportation protocol using dissimilar semiconductor quantum dot (QD) emitters, deployed in a hybrid fiber + free-space metropolitan link. Two independent GaAs quantum dots, engineered via nanophotonic cavities, piezoelectric strain tuning and magnetic-field control, serve as the sender and entangled-photon source. The emitters are initially spectrally distinct, through tailored tuning we surpass the classical fidelity limit more than ten standard deviations (0.82(1)). This successful demonstration constitutes a key step toward scalable, QD-based quantum relays and repeaters.

Q 48.2 Thu 11:30 P 7

Full photonic quantum teleportation with remote quantum dots — •SIMONE LUCA PORTALUPI¹, TIM STROBEL¹, MICHAL VYVLECKA¹,ILENIA NEUREUTHER¹,TOBIAS BAUER², MARLON SCHÄFER², STEFAN KAZMAIER¹, NAND LAL SHARMA³, RAPHAEL JOOS¹, JONAS H. WEBER¹, CORNELIUS NAWRATH¹, WEIJIE NIE³, GHATA BHAYANI³, CASPAR HOPFMANN³, CHRISTOPH BECHER², and PETER MICHLER¹ — ¹Institut für Halbleiteroptik und Funktionelle Grenzflächen, Center for Integrated Quantum Science and Technology (IQST) and SCoPE, University of Stuttgart, Stuttgart, Germany — ²Fachrichtung Physik, Universität des Saarlandes, Saarbrücken, Germany — ³Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, Germany

The realization of a multinode quantum network is the first necessary step towards the implementation of the quantum internet. With this target in mind, we will report on a recent experiment where successful full-photonic quantum teleportation has been achieved, employing two remote quantum dots as sources of quantum light. This experiment exploited quantum frequency conversion to enable operation at telecom wavelength. [1] The successful teleportation achieved with two distinct sources lay the foundation to future experiments: it shows scalability of this approach, compatibility with fibre networks, interoperability of different systems (as semiconductor quantum dots and frequency conversion elements), and operation of distinct nodes. All are necessary steps towards the implementation of a realistic quantum network.

[1] T. Strobel, et al., *Nat. Commun.* 16, 10027 (2025).

Q 48.3 Thu 11:45 P 7

AlGaAs nanowires as a universal platform for GaAs, InGaAs, and InAs quantum dots — •ROHAN RADHAKRISHNAN¹, RODION REZNIK², GILLES PATRIARCHE³, GEORGE CIRLIN², and NIKA AKOPIAN¹ — ¹DTU Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark — ²St. Petersburg, Russia — ³Centre de Nanosciences et Nanotechnologies, Université Paris Saclay, CNRS, 91120 Palaiseau, France

Optical quantum dots are at the core of quantum communication and quantum photonic technologies, requiring precise control over emission wavelengths spanning from 780 nm to 1.55 μ m. However, no existing host material enables the full compositional tuning needed to cover the range from GaAs through InGaAs to InAs quantum dots. Here, we demonstrate that embedding InGaAs quantum dots in AlGaAs nanowires provides a universal platform capable of spanning this entire spectral range. By growing 2 s and 5 s long sections of InGaAs, we form

quantum dots emitting at 780 nm and 920 nm, respectively, showcasing control of emission wavelength via growth parameters. Unlike previous systems, our approach offers continuous compositional control without compromising optical quality, establishing AlGaAs nanowires as a versatile host for scalable, high-performance quantum light sources.

Q 48.4 Thu 12:00 P 7

Universal super-resolution framework for imaging of quantum dots — DOMINIK VAŠINKA¹, JAEWON LEE², •CHARLIE STALKER², VICTOR MITRYAKHIN³, IVAN SOLOVEV³, SVEN STEPHAN^{3,4}, SVEN HÖFLING⁵, FALK EILENBERGER^{6,7,8}, SETH ARIEL TONGAY⁹, CHRISTIAN SCHNEIDER³, MIROSLAV JEŽEK¹, and ANA PREDOJEVIC² — ¹Department of Optics, Faculty of Science, Palacký University, 17. listopadu 12, 77900 Olomouc, Czechia — ²Department of Physics, Stockholm University, 10691 Stockholm, Sweden — ³Institut of Physics, University of Oldenburg, D-26129 Oldenburg, Germany — ⁴University of Applied Sciences Emden/Leer, 26723 Emden, Germany — ⁵Technische Physik, Physikalisches Institut and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany — ⁶Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany — ⁷Fraunhofer-Institute for Applied Optics and Precision Engineering IOF, 07743 Jena, Germany — ⁸Max-Planck-School of Photonics, 07743 Jena, Germany — ⁹Materials Science and Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States

We present a universal deep-learning method that reconstructs super-resolved images of quantum emitters from a single camera frame measurement. This method was then validated experimentally on various quantum dot samples and allows for rapid super-resolution for quantum photonic device fabrication.

Q 48.5 Thu 12:15 P 7

Quantum communication protocols with Quantum Dots as a source of Polarization-entangled photons — MICHELE ROTA¹, FRANCESCO BASSO BASSET^{1,2}, ALESSANDRO LANEVE¹, •FRANCESCO SALUSTI³, NICOLAS CLARO RODRIGUEZ³, GIUSEPPE RONCO¹, MATTIA BECCACECI¹, TOBIAS M. KRIEGER⁴, QUIRIN BUCHINGER⁵, SALMON F. COVRE DA SILVA⁶, SANDRA STROJ⁷, MARIA GUMBERIDZE⁸, VLADYSLAV USENKO⁸, SVEN HÖFLING⁵, TOBIAS HUBER-LOYOLA^{5,9,10}, MARIO A. USUGA CASTANEDA¹¹, ARMANDO RASTELLI⁴, KLAUS D. JÖNS³, and RINALDO TROTTA¹ — ¹Department of Physics, Sapienza University of Rome, Rome, Italy — ²Dipartimento di Fisica, Politecnico di Milano, Milano, Italy — ³PhoQS Institute, CeOPP, and Department of Physics, Paderborn University, Paderborn, Germany — ⁴Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Linz, Austria — ⁵Technische Physik, University of Würzburg, Würzburg, Germany — ⁶Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, Brazil — ⁷Research Center for Microtechnology, Vorarlberg University of Applied Sciences, CAMPUS V, Dornbirn, Austria — ⁸Department of Optics, Palacký University, Olomouc, Czech Republic — ⁹Institute of Photonics and Quantum Electronics, Karlsruhe Institute of Technology, Karlsruhe, Germany — ¹⁰Center for Integrated Quantum Science and Technology (IQST), Karlsruhe Institute of Technology, Karlsruhe, Germany — ¹¹Single Quantum B.V., Delft, The Netherlands

We demonstrate entanglement swapping exploiting a quantum dot in a cavity, using entangled photons for a modified Ekert91 protocol.

Q 48.6 Thu 12:30 P 7

Mode-engineering in quantum dot single photon sources to increase collection and excitation efficiency — •SAMUEL HUBER¹, ALBERT ADIYATULLIN², VIVIANA VILLAFANE², DARIO A. FIORETTI¹, SEBASTIEN BOISSIER², HUONG THI AU², and PASCALE SENELLART¹ — ¹C2N, Palaiseau, France — ²Quandela, Massy, France

The development of photonic quantum technologies requires high quality single photon sources in terms of brightness, purity, and indistinguishability. In my PhD, I aim to improve these metrics in micropillar

quantum dot single photon sources by studying the optical eigenmodes in the micropillar. The eigenmodes spatial overlap with the mode of the collection path directly contributes to the single photon source brightness. Quantifying this coupling efficiency also reveals new pathways to enhance the efficiency of detuned quantum dot excitation protocols. Standard detuned-pulse schemes are fundamentally constrained by the micropillar stopband, which suppresses field penetration into the cavity mode, increasing the required excitation power. To mitigate this limitation, I am exploring the coupling of the detuned pulses to higher-order cavity modes, as well as to auxiliary modes engineered through additional spacer layers within the Bragg-mirror stack. These engineered modes provide improved spectral overlap and field confinement for off-resonant driving, enabling a viable route towards high-efficiency Swing-Up (SUPER) excitation in micropillar resonators.

Q 48.7 Thu 12:45 P 7

Decoy-state quantum key distribution over 227 km with a frequency-converted telecom single-photon source
 — •FREDERIK BROOKE BARNES¹, ROBERT GONZALEZ-POUSA², CHRISTOPHER L. MORRISON¹, ZHE XIAN KOONG¹, JOSEPH HO¹, FRANCESCO GRAFFITTI¹, JOHN JEFFERS², DANIEL K. L. OI², BRIAN

D. GERARDOT¹, and ALESSANDRO FEDRIZZI¹ — ¹Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK — ²SUPA Department of Physics, University of Strathclyde, Glasgow, G4 0NG, UK

We implement a decoy-state quantum key distribution scheme using a quantum dot frequency-converted to the telecom C-band. The decoy states are created by varying the optical excitation of the quantum emitter to modulate the photon number distribution. We provide an analysis of our scheme based on existing security proofs, allowing the calculation of secret key rates including finite key effects. This enables us to demonstrate, with a realistic single-photon source, positive secret key rates using our scheme over 227 km of optical fibre, equivalent to an increase in loss tolerance greater than one order of magnitude compared to non-decoy schemes, and within 2dB of the tolerable loss when using a single-photon source with similar brightness but perfect single-photon purity. We provide a short perspective on how our methods could be applied to other quantum communication protocols, such as those compatible with quantum memories, to extend secure transmission distances beyond the repeater-less limit.