

Q 73: Quantum Technologies – Solid State Systems

Time: Friday 11:00–13:00

Location: P 7

Invited Talk

Q 73.1 Fri 11:00 P 7

Microwave quantum communication with rare-earth spin ensembles — •NADEZHDA KUKHARCHYK — Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, D-85748 Garching, Germany — School of Natural Sciences, Technische Universität München, D-85748 Garching, Germany — Munich Center for Quantum Science and Technology, D-80799 Munich, Germany

Microwave quantum communication, encompassing the development of microwave quantum key distribution (QKD), quantum microwave entanglement distribution, and compatible quantum storage elements, is a highly promising area in the evolution of radio technologies toward 6G wireless networks. In our work, we focus on the development of microwave quantum memories that are compatible with microwave quantum circuits, which play a central role in quantum computing and microwave QKD protocols.

In this talk, I will present our progress in the development of broadband microwave quantum memories based on rare-earth spin ensembles, discuss their envisioned integration with microwave QKD systems, and explore potential applications in next-generation quantum communication networks.

Q 73.2 Fri 11:30 P 7

Some defects in silicon-based material – towards integrated silicon photonics — •PHILIPP KELLNER, BERND HÄHNLEIN, KEVIN LAUER, CHRISTIAN MÖLLER, KAI KÜHNLENZ, MARIO BÄHR, and THOMAS ORTLEPP — CIS Inst. für Mikrosensorik, Konrad-Zuse-Straße 14, 99099 Erfurt

For years Silicon is known as the standard VIS and NIR sensor material, although an indirect semiconductor. It is still a material of choice for optoelectronics, due to known handling and structuring procedures as well as CMOS-compatibility allowing for highly integrated devices. The given presentation will shed light on defect-based light emitter in indium-doped silicon and gallium implanted silicon-nitride, showing generation methods and photoluminescence spectra. Abbe-limited optical microscopy is going to be used for imaging and photostability will be estimated. These experiments will undertake very first steps towards small light sources on silicon chips and in turn integrated silicon photonics.

Q 73.3 Fri 11:45 P 7

Toward an Efficient Quantum-Photonic Interface for Rare-Earth Ions on a Hybrid LNOI-TiO₂ Platform — •TOBIAS FEUERBACH¹, GEORGI GRECHKO¹, CHRISTOPHER NG¹, ROMAN KOLESOV¹, and JÖRG WRACHTRUP^{1,2} — ¹3rd Institute of Physics, University of Stuttgart, Germany — ²Max Planck Institute of Solid State Research, Stuttgart, Germany

Over the years rare-earth ions (REIs) have gained attention for quantum memory applications due to their telecom wavelength compatibility and exceptional coherence times. Their low photon rates, however, make cavity-enabled Purcell enhancement necessary.

Hybrid-material photonic crystal cavities (PCCs) are a promising approach for photonic integration of REIs, combining the strengths of different materials. We employ a hybrid photonic system that merges lithium niobate on insulator (LNOI), offering electro-optical tunability and scalable fabrication, with TiO₂, a high-index and spin-free host for REIs, enabling scalable, tunable and efficient quantum photonic interfaces at telecom wavelength.

We compare techniques for Er³⁺ integration into rutile TiO₂ waveguides and discuss our hybrid TiO₂/LNOI process, that is based on the fabrication of freestanding TiO₂ structures, Van-der-Waals bonding to x-cut LNOI and subsequent nanofabrication of the combined stack. Specifically, tunable hybrid PCCs made from TiO₂/LNOI are presented. A loaded Q-factor of 42k and a tunability of 0.8 GHz/V is achieved. We use a bifocal microscope for spectral characterization, enabled by a custom freespace-to-chip coupling technique.

Q 73.4 Fri 12:00 P 7

Detecting Bell-Operator Correlations in Superconducting Devices — KE WANG¹, WEIKANG LI², SHIBO XU¹, MENGYAO HU³, JIACHEN CHEN¹, YAOZU WU¹, CHUANYU ZHANG¹, FEITONG JIN¹, XUHAO ZHU¹, YU GAO¹, ZIQI TAN¹, ZHENGYI CUI¹, AOSAI ZHANG¹, NING WANG¹, YIREN ZOU¹, TINGTING LI¹, FANHAO SHEN¹,

JIARUN ZHONG¹, ZEHANG BAO¹, ZITIAN ZHU¹, ZIXUAN SONG¹, JINFENG DENG¹, HANG DONG¹, XU ZHANG¹, PENGFEI ZHANG¹, WENJIE JIANG¹, ZHIDE LU¹, ZHENG-ZHI SUN¹, HEKANG LI¹, QIUJIANG GUO¹, ZHEN WANG¹, •PATRICK EMONTS^{3,4}, JORDI TURA³, CHAO SONG¹, HAO WANG¹, and DONG-LING DENG² — ¹Zhejiang University, China — ²Tsinghua University, China — ³Leiden University, The Netherlands — ⁴Ulm University, Germany

Quantum nonlocality represents a stronger form of quantum correlation than entanglement and defies Einstein's notion of local realism. It serves as a key resource for applications such as cryptography or certified randomness. Yet, detecting nonlocality in many-body systems remains highly challenging. In this talk, I present the experimental viability of Hamiltonians to certify genuine multipartite Bell-Operator correlations in systems up to 24 qubits on a programmable superconducting processor. As an example, we variationally prepare a low-energy state of a 73-qubit honeycomb model and certify its Bell-Operator correlations by measuring an energy exceeding the classical bound by 48 standard deviations. This establishes a practical route for preparing and certifying multipartite Bell correlations as a stronger benchmark beyond entanglement (Phys. Rev. X 15, 021024, 2025).

Q 73.5 Fri 12:15 P 7

Effect of Heterostrain on the Photophysical Properties of WSe₂/MoSe₂ Heterobilayers — •HILAL KORKUT and İBRAHİM SARPKAYA — Bilkent University, UNAM (National Nanotechnology Research Center), Ankara, Turkey

Transition metal dichalcogenides have attracted broad interest due to their exceptional mechanical, electronic, and optical properties¹. Owing to their long lifetime, permanent out-of-electric dipole, and high tunability provide an excellent platform for exploring correlated interactions and valley-dependent physics². In this talk, I will present how heterostrain modifies the low-temperature optical responses of interlayer excitons in WSe₂/MoSe₂ heterobilayers and demonstrate how strain can be utilized as a means of controlling these properties. References 1.*Wang, G. et al. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 21001 (2018). 2.*Durmuş, M. A., Demiralay, K., Khan, M. M., Atalay, S. E. & Sarpkaya, I. Prolonged dephasing time of ensemble of moiré-trapped interlayer excitons in WSe₂-MoSe₂ heterobilayers. npj 2D Mater. Appl. 2023 71 7, 1*8 (2023).

Q 73.6 Fri 12:30 P 7

Nanophotonic engineering to enhance laser cooling via Erbium ions — •NILESH GOEL, FLORIAN BURGER, ANDREW PROPPER, STEPHAN RINNER, ANDREAS GRITSCH, KILIAN SANDHOLZER, and ANDREAS REISERER — Technical University of Munich, TUM School of Natural Sciences, Physics Department and Munich Center for Quantum Science and Technology (MCQST), James-Franck-Str. 1, 85748 Garching, Germany

The cooling of solid-state quantum systems is a key requirement for their coherent operation. Conventional cryocoolers are limited by their large size, power consumption, and added vibrations. Therefore we explore an alternative route: on-chip laser cooling of silicon nanostructures using erbium dopants as local refrigerants. While direct optical refrigeration of semiconductors is challenging, erbium ions embedded in a nanophotonic slow-light waveguide can efficiently pump entropy from the phonon bath into a guided light mode. In a first experiment, we show how this allows for accurate temperature measurement [1]. To enhance the cooling process, we then use slow-light engineering to tailor the local density of states over a broad spectral range. This way we can suppress the unwanted radiative channels [2] to suppress competing decay pathways, thereby improving the cooling efficiencies of the system. We show the current progress towards this goal and outline the next steps toward enhanced laser cooling in solid state systems.

[1] K. Sandholzer et al., Nanophotonics 14, 2005 (2025).

[2] F. Burger et al., arXiv:2511.23301 (2025).

Q 73.7 Fri 12:45 P 7

Optically detected nuclear magnetic resonance of coherent spins in a molecular complex — •VISHNU UNNI CHORAKKUNNATH, EVGENIJ VASILENKO, PREETHIKA THIRAVIAM, NICHOLAS JOBBITT, BARBORA BRACHNAKOVA, SENTHIL KUPPUSAMY, MARIO RUBEN, and

DAVID HUNGER — Karlsruher Institut für Technologie, Karlsruhe, Germany

A europium-based molecular complex has recently shown [1] competitive optical coherence time, surpassing those of europium-doped solid-state nanocrystals. Molecular complexes offer the possibility of tailoring ligand fields to improve and control optical and spin properties to realize optically addressable spin qubits. We report the first optically detected nuclear magnetic resonance (ODNMR) in a molecular complex. We observe nuclear Rabi-oscillations and spin coherence times (T2) of $\sim 600^*$ s in a single-crystal sample of the molecular complex at

4.2K. The spin coherence is extended up to 2ms with dynamical decoupling. Furthermore, we report strong nuclear and optical transition frequency correlation [2]. The self-assembly of molecular complexes into high-quality crystals improves optical and spin properties. Such crystals can be integrated into fibre-based microcavities [3] to enhance emission rates by the Purcell effect. These results are important steps towards single Eu³⁺ ion experiments to realize optically addressable spin qubits.

- [1] Serrano et al., *Nature*, 603, 241-246 (2022)
- [2] Vasilenko et al., arXiv:2509.01467 (2025)
- [3] Eichhorn et al., *Nanophotonics* 14, 1817 (2025)