DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2009 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Downloads | Hilfe

HL: Fachverband Halbleiterphysik

HL 38: Focused Session: Different realizations of quantum registers

HL 38.4: Topical Talk

Donnerstag, 26. März 2009, 11:15–11:45, HSZ 01

Spectroscopy and Coherent Control of Single Spins — •Gregory Fuchs — Center for Spintronics and Quantum Computation, University of California, Santa Barbara, CA, USA

Nitrogen Vacancy (NV) defect centers in diamond are a promising system for spin-based applications in quantum information and communication at room temperature. Using a combination of optical microscopy and spin resonance, the spin of individual NV centers can be initialized, manipulated and read out. There remain significant challenges, however, both in understanding the physics of these defects as well as the development of technologies based on their quantum properties. In particular, knowledge of the detailed structure of the orbital excited-state, which continues to be an active research area, is critical to ultra-fast quantum control schemes. Here we present recent experiments using single-spin resonant spectroscopy of the excited-state of an NV center at room temperature1. We observe these spin levels over a broad range of magnetic fields allowing for a direct measurement of the zero-field splitting, g-factor and transverse anisotropy splitting. The latter of these is nearly zero in the ground-state spin levels, but plays an important role in the excited-state. In addition, we find strong hyperfine coupling between the nitrogen nuclear spin and the NV electronic spin in the excited-state. These findings will be discussed in the context of quantum control of single and coupled spins in diamond.

1 G. D. Fuchs, V. V. Dobrovitski, R. Hanson, A. Batra, C. D. Weis, T. Schenkel, and D. D. Awschalom, Phys. Rev. Lett 101, 117601 (2008).

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2009 > Dresden