DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2009 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Downloads | Hilfe

SYOP: Symposium Organic Photovoltaics: From Single Molecules to Devices

SYOP 2: Organic Photovoltaics: from Single Molecules to Devices

SYOP 2.2: Hauptvortrag

Donnerstag, 26. März 2009, 10:00–10:30, BAR SCHÖ

Triplet exciton formation in organic photovoltaicsXudong Yang, Sebastian Westenhoff, Ian Howard, Thomas Ford, Richard Friend, Justin Hodgkiss, and •Neil Greenham — Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom

We have recently found that the formation of triplet excitons can be an important loss mechanism in organic photovoltaics, particularly in donor-acceptor blends designed to have high open-circuit voltages. This can occur when the intrachain triplet state lies lower in energy than the charge-transfer state formed at the heterojunction. We find that in a blend based on the polyfluorene derivatives F8BT and PFB, triplet excitons are formed after photoexcitation with much higher efficiency than in the component polymers. We use transient absorption spectroscopy to study the dynamics of charges and triplet excitons on timescales from picoseconds to microseconds. This allows us to determine a characteristic time of ∼ 40 ns for intersystem crossing in the charge-separated state, and to estimate that as many as 75% of photoexcitations lead to the formation of triplet states. To avoid losses to triplet excitons in photovoltaic devices, it is necessary to separate charge pairs before intersystem crossing can occur. We also present photophysical measurements of saturation and relaxation of the triplet excited state absorption used to quantify triplet populations.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2009 > Dresden