DPG Phi
Verhandlungen
Verhandlungen
DPG

Erlangen 2018 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

Q: Fachverband Quantenoptik und Photonik

Q 4: Matter Wave Optics I

Q 4.4: Vortrag

Montag, 5. März 2018, 11:15–11:30, K 1.013

Simulation of Bose-Einstein condensates in accelerated Bloch lattices towards large momentum transfer atom interferometers — •Jan-Niclas Siemss1, Ernst Maria Rasel2, Klemens Hammerer1, and Naceur Gaaloul21Institut für Theoretische Physik, Leibniz Universität Hannover, Germany — 2Institut für Quantenoptik, Leibniz Universität Hannover, Germany

Large momentum transfer (LMT) schemes for atom interferometry increase the spatial separation of the two interferometer arms enhancing the sensitivity of such atomic detectors. Alternatively, one would employ large interrogation times in microgravity[1] and fountains[2].

Novel LMT schemes for atom interferometry combine Bragg pulses and Bloch oscillations in optical lattices to coherently split and recombine the atomic wave packets.

The use of delta-kick collimated Bose-Einstein condensates is crucial as the performance of such an interferometer is limited by the fidelity of the LMT atom-light interaction which is constrained by the finite momentum width of the atomic ensemble and tunneling to higher-order bands of the optical lattice.

In our work, we simulate interferometric sequences involving Bose-Einstein condensates driven by symmetric optical lattices to interpret and optimize pioneering experiments performed in the QUANTUS collaboration. To this end, a time-dependent Gross-Pitaevskii model is developed and adapted to typical experimental environments.

[1]H. Müntinga et al. Phys. Rev. Lett. 110, 093602 (2013)

[2]S. M. Dickerson et al. Phys. Rev. Lett. 111, 083001 (2013)

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2018 > Erlangen