Aachen 2019 –
            
              scientific programme
            
          
        
        
        
        
        
      
      
  
    
  
  T 4: Deep Learning I
  Monday, March 25, 2019, 16:00–18:30, H06
  
    
  
  
    
      
        
          
            
              |  | 16:00 | T 4.1 | Physics inspired feature engineering with Lorentz Boost Networks — •Yannik Rath, Martin Erdmann, Erik Geiser, and Marcel Rieger | 
        
          |  |  | 
      
    
      
        
          
            
              |  | 16:15 | T 4.2 | Further development of the ATLAS Deep Learning flavour tagging algorithm — •Manuel Guth | 
        
          |  |  | 
      
    
      
        
          
            
              |  | 16:30 | T 4.3 | Application of Deep Learning to Heavy Flavour Jet Identification with the CMS Experiment — Xavier Coubez, Luca Mastrolorenzo, •Spandan Mondal, Andrzej Novak, Andrey Pozdnyakov, and Alexander Schmidt | 
        
          |  |  | 
      
    
      
        
          
            
              |  | 16:45 | T 4.4 | Validation of a Deep Neural Network Based Flavor Tagging Algorithm at Belle and Belle II — •Jochen Gemmler, Florian Bernlochner, Michael Feindt, and Pablo Goldenzweig for the Belle 2 collaboration | 
        
          |  |  | 
      
    
      
        
          
            
              |  | 17:00 | T 4.5 | Adversarial Neural Network-based data-simulation corrections for jet-tagging at CMS — Martin Erdmann, •Benjamin Fischer, Dennis Noll, Yannik Rath, Marcel Rieger, and David Schmidt | 
        
          |  |  | 
      
    
      
        
          
            
              |  | 17:15 | T 4.6 | Hyperparameter optimization of Adversarial Neural Networks in the tW dilepton channel using the ATLAS detector — •Christian Kirfel, Ian Brock, and Rui Zhang | 
        
          |  |  | 
      
    
      
        
          
            
              |  | 17:30 | T 4.7 | Adversarial Neural Networks zur Reduzierung des Einflusses von systematischen Unsicherheiten am Beispiel einer ttH -Analyse — •Jörg Schindler, Karim El Morabit, Ulrich Husemann, Philip Keicher, Matthias Schröder, Jan van der Linden und Michael Wassmer | 
        
          |  |  | 
      
    
      
        
          
            
              |  | 17:45 | T 4.8 | Precise simulation of electromagnetic calorimeter showers using a Wasserstein Generative Adversarial Network — Martin Erdmann, Jonas Glombitza, and •Thorben Quast | 
        
          |  |  | 
      
    
      
        
          
            
              |  | 18:00 | T 4.9 | Parton showers with Generative Adversarial Networks — •Christof Sauer | 
        
          |  |  | 
      
    
      
        
          
            
              |  | 18:15 | T 4.10 | Reinforced Sorting Networks for Particle Physics Analyses — Martin Erdmann, Benjamin Fischer, •Dennis Noll, Yannik Alexander Rath, Marcel Rieger, David Josef Schmidt, and Marcus Wirtz | 
        
          |  |  |