Die DPG-Frühjahrstagung in Dresden musste abgesagt werden! Lesen Sie mehr ...

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

TT: Fachverband Tiefe Temperaturen

TT 16: Poster Session Superconductivity, Cryogenic Particle Detectors, Cryotechnique

TT 16.34: Poster

Montag, 16. März 2020, 15:00–19:00, P2/EG

Optimized geometry for a compact 3D quantum memory — •Julia Lamprich1,2, Stephan Trattnig1,2, Yuki Nojiri1,2,3, Qiming Chen1,2,3, Stephan Pogozarek1,2, Michael Renger1,2,3, Kirill Fedorov1,2,3, Achim Marx1,2,3, Matti Partanen1,3, Frank Deppe1,3, and Rudolf Gross1,2,31Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany — 2Physik-Department, Technische Universität München, 85748 Garching, Germany — 3Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 Munich, Germany

Quantum memories are of high relevance in the context of quantum computing and quantum communication. In view of the tremendous publicly-funded and commercial efforts to build scalable architectures based on superconducting quantum circuits, 3D cavities are promising candidates for a quantum memory. Recently, a compact layout exploiting the multimode structure of a rectangular 3D cavity has been demonstrated [1]. As an alternative to an improved operation mode of this device with optimal control strategies [2], we discuss an optimization of the cavity geometry here. Our results are promising with respect to key properties such as storage time and scalability.
We acknowledge support by the Germany’s Excellence Strategy EXC-2111-390814868, Elite Network of Bavaria through the program ExQM, and the European Union via the Quantum Flagship project QMiCS (Grant No. 820505).

[1] E. Xie et al., Appl. Phys. Lett. 112, 202601 (2018).

[2] Sh. Machnes et al., Phys. Rev. Lett. 120, 150401 (2018)

100% | Bildschirmansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2020 > Dresden