DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2020 – scientific programme

The DPG Spring Meeting in Dresden had to be cancelled! Read more ...

Parts | Days | Selection | Search | Updates | Downloads | Help

TT: Fachverband Tiefe Temperaturen

TT 16: Poster Session Superconductivity, Cryogenic Particle Detectors, Cryotechnique

TT 16.35: Poster

Monday, March 16, 2020, 15:00–19:00, P2/EG

Quantum key distribution with squeezed displaced microwave states — •Florian. Fesquet1,2, Kirill.G. Fedorov1,2, Stefan. Pogorzalek1,2, Michael. Renger1,2, Qi-Ming. Chen1,2, Yuki. Nojiri1,2, Matti. Partanen1, Achim. Marx1, Frank. Deppe1,2,3, and Rudolf. Gross1,2,31Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany — 2Physik-Department, TU München, 85748 Garching, Germany — 3Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 Munich, Germany

Quantum key distribution (QKD) is a technique to secretly communicate a key string between two parties. For continuous variables, the security can be achieved using properties of quantum mechanics, notably the non-commutativity of variables. We investigate a prepare-and-measure continuous-variables QKD protocol based on single-mode squeezed displaced microwave states to communicate a Gaussian modulated key. We theoretically investigate the secrecy and secret key rate of the protocol with an eavesdropper. It is shown that depending on the additional noise induced by the eavesdropper, the protocol is proven to be secure at the cost of an increased signal-to-noise ratio. Additionally, we show preliminary experimental results of the protocol in the microwave regime.
We acknowledge support by the Germany’s Excellence Strategy EXC-2111-390814868, Elite Network of Bavaria through the program ExQM, and the European Union via the Quantum Flagship project QMiCS (GrantNo.820505).

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2020 > Dresden