DPG Phi
Verhandlungen
Verhandlungen
DPG

SAMOP 2021 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

A: Fachverband Atomphysik

A 1: Atomic clusters / Collisions, scattering, correlation

A 1.1: Hauptvortrag

Montag, 20. September 2021, 10:45–11:15, H1

Time-resolved X-ray Imaging of Anisotropic Nanoplasma Expansion — •Christian Peltz1, Christoph Bostedt2, Mathias Kling3, Thomas Brabec4, Eckart Ruehl5, Artem Rudenko6, Tais Gorkhover7, and Thomas Fennel11Institute of Physics, University of Rostock, Germany — 2Paul Scherrer Institute, Villigen, Switzerland — 3Faculty of Physics, LMU Munich, Germany — 4Department of Physics and Centre for Photonics Research, University of Ottawa, Canada — 5Physical Chemistry, FU Berlin, Germany — 6Department of Physics, Kansas-State University, USA — 7LCLS, SLAC National Accelerator Laboratory, Menlo Park, USA

We investigate the time-dependent evolution of laser-heated solid-density nanoparticles via coherent diffractive x-ray imaging, theoretically and experimentally. Our microscopic particle-in-cell calculations for R = 25 nm hydrogen clusters reveal that infrared laser excitation induces continuous ion ablation on the cluster surface. This process generates an anisotropic nanoplasma expansion that can be accurately described by a simple self-similar radial density profile. It’s time evolution can be reconstructed precisely by fitting the time-resolved scattering images using a simplified scattering model in Born approximation [1]. Here we present the first successful high resolution reconstruction of corresponding experimental results, obtained at the LCLS facility with SiO2 nanoparticles (D=120 nm), giving unprecedented insight into the spatio-temporal evolution of the nanoplasma expansion.

[1] C. Peltz, C. Varin, T. Brabec and T. Fennel , Phys. Rev. Lett. 113, 133401 (2014)

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2021 > SAMOP