Parts | Days | Selection | Search | Updates | Downloads | Help

KFM: Fachverband Kristalline Festkörper und deren Mikrostruktur

KFM 3: Focus Session II: Ferroics - Domains and Domain Walls

KFM 3.1: Talk

Tuesday, September 28, 2021, 13:30–13:45, H2

Tunable conductive domain wall switches in 200- μm-thick lithium niobate single crystals — •Henrik Beccard1, Benjamin Kirbus1, Ekta Singh1, Zeeshan Amber1, Michael Rüsing1, Elke Beyreuther1, and Lukas M. Eng1,21Institut für Angewandte Physik, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany ct.qmat — 2ct.qmat Dresden-Würzburg Cluster of Excellence EXC 2147, TU Dresden, 01062 Dresden, Germany

In the ferroelectric model material lithium niobate (LNO), state-of-the- art techniques allow the targeted poling of ferroelectric domains, as well as the enhancement of domain wall (DW) conductivity over several orders of magnitude [1]. Imaging and analyzing these properties can be performed with piezoresponse force microscopy (PFM) and confocal 3D second harmonic generation (SHG) microscopy [2]. The correlation between DW geometry and electrical DW conductivity is well established. Moreover, it can be simulated e.g. using a resistor network model [3]. Hence, an increasing focus in the ferroelectrics community is set on the realization of DW-based nanoelectronic devices. Recently, tunable DW switches have been reported for LNO thin films [4]. On the contrary, we report on tunable DW switches inside of 200- μm-thick LNO single crystals, relying purely on solid electrodes [5].

[1] C. Godau et al. ACS Nano 11, 4816 (2017)

[2] T. Kämpfe et al. Phys. Rev. B 8, 035314 (2014)

[3] B. Wolba et al. Adv. Electron. Mater. 4, 1700242 (2018)

[4] H. Lu et al. Adv. Mater. 1902890 (2019)

[5] B. Kirbus et al. ACS Appl. Nano Mater. 2, 5787 (2019)

100% | Screen Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2021 > SKM