Dresden 2026 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
AKPIK: Arbeitskreis Physik, moderne Informationstechnologie und Künstliche Intelligenz
AKPIK 2: Machine Learning Prediction and Optimization Tasks
AKPIK 2.4: Vortrag
Dienstag, 10. März 2026, 10:15–10:30, BEY/0127
Modeling resonant soliton interactions in the Kadomtsev-Petviashvili equation using PINNs — •Gerald Kämmerer — Universität Duisburg
Resonant two-soliton interactions in the Kadomtsev-Petviashvili (KP) equation are modeled using Physics-Informed Neural Networks (PINNs). This framework directly solves the KP equation by incorporating the governing partial differential equation residuals into the loss function, specifically focusing on Y-shaped resonances and web-like patterns that occur under specific resonance conditions. Comparisons with known algebraic solutions show a good agreement in capturing characteristic interaction patterns. To accelerate the learning of complex dynamics, progressive training strategies and symmetry-informed network architectures are implemented, embedding the equation's inherent coordinate symmetries. The results demonstrate that PINNs can capture the rich dynamics of resonant soliton interactions, offering a framework for exploring parameter regimes beyond traditional numerical methods.
Keywords: PINNs; Kadomtsev-Petviashvili; PDE; Soliton
