Dresden 2026 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
AKPIK: Arbeitskreis Physik, moderne Informationstechnologie und Künstliche Intelligenz
AKPIK 2: Machine Learning Prediction and Optimization Tasks
Dienstag, 10. März 2026, 09:30–10:45, BEY/0127
![]() |
09:30 | AKPIK 2.1 | Bayesian Optimization for Mixed-Variable Problems in the Natural Sciences — •Yuhao Zhang, Ti John, Matthias Stosiek, and Patrick Rinke |
![]() |
09:45 | AKPIK 2.2 | Overparametrization bends the landscape: BBP transitions at initialization in simple Neural Networks — •Brandon Livio Annesi, Chiara Cammarota, and Dario Bocchi |
![]() |
10:00 | AKPIK 2.3 | Training convolutional neural networks with the forward - forward algorithm — •Matthias Schröter, Frauke Alves, and Riccardo Scodellaro |
![]() |
10:15 | AKPIK 2.4 | Modeling resonant soliton interactions in the Kadomtsev-Petviashvili equation using PINNs — •Gerald Kämmerer |
![]() |
10:30 | AKPIK 2.5 | Phase Transitions reveal Accuracy Hierarchies in Deep Learning — •Ibrahim Talha Ersoy, Andrés Fernando Cardozo Licha, and Karoline Wiesner |

