DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2026 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

CPP: Fachverband Chemische Physik und Polymerphysik

CPP 26: French-German Session: 2D Materials, Thin Films and Interfaces II

CPP 26.2: Vortrag

Dienstag, 10. März 2026, 14:30–14:45, HÜL/S386

Atomistic Origin of Photoluminescence Quenching in Colloidal MoS2 and WS2 Nanoplatelets — •Surender Kumar1, Markus Fröhlich2, Stefan Velja1, Marco Kögel2, Onno Strolka2,3, André Niebur3, Samuell Ginzburg4, Muhammad Sufyan Ramzan1, Jannik C. Meyer2, Jannika Lauth2,3, and Caterina Cocchi11Friedrich-Schiller-Universität Jena, Germany — 2Eberhard Karls University of Tübingen, Germany — 3Leibniz University of Hannover, Germany — 4University of Cambridge, UK

Large chemical tunability and strong light-matter interactions make colloidal transition metal dichalcogenide nanostructures particularly suitable for light-emitting applications. However, ultrafast exciton decay and quenched photoluminescence limit their potential. Combining femtosecond transient absorption spectroscopy with first-principles calculations on MoS2 and WS2 nanoplatelets, we reveal that the observed sub-picosecond exciton decay originates from edge-located optically bright hole traps [1]. These intrinsic trap states stem from the metal d-orbitals and persist even when the sulfur-terminated edges are hydrogen-passivated. Notably, WS2 nanoplatelets show more localized and optically active edge states than their MoS2 counterparts, and zigzag edges exhibit a higher trap density than armchair edges. The nanoplatelet size dictates the competition between ultrafast edge-trapping and slower core-exciton recombination, and the states responsible for exciton quenching enhance catalytic activity.
[1] S. Kumar, et al., arXiv:2511.19077 (2025)

Keywords: Transient absorption spectroscopy; Photoluminescence quenching; DFT; Edge states; Colloidal MoS2 and WS2 nanoplatelet

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2026 > Dresden