Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

DS: Fachverband Dünne Schichten

DS 20: Poster

DS 20.43: Poster

Donnerstag, 12. März 2026, 18:30–20:30, P2

High-Fermi velocity massless carriers in a triangular monolayer of SbBing Liu1,2, •Kilian Strauß1,2, Philipp Eck2,3, Jonas Erhardt1,2, Tim Wagner1,2, Philipp Keßler1,2, Cedric Schmitt1,2, Lukas Gehrig1,2, Stefan Enzner2,3, Martin Kamp1,2, Jörg Schäfer1,2, Giorgio Sangiovanni2,3, Simon Moser1,2, and Ralph Claessen1,21Physikalisches Institut, Universität Würzburg, D-97074 Würzburg, Germany — 2Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074 Würzburg, Germany — 3Institut für Theoretische Physik und Astrophysik, Universität Würzburg, D-97074 Würzburg, Germany

Two-dimensional (2D) quantum materials with high Fermi velocities are key candidates for ballistic transport and high-speed electronics. However, few 2D systems have the potential to demonstrate Fermi velocities exceeding that of graphene, remaining at the level of prediction. Here, we report the successful synthesis of a triangular monolayer of antimony (Sb) on the wide-gap semiconductor SiC. Using combined angle resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM) in combination with density functional theory (DFT), we reveal orbital filtering that isolates broad-bandwidth, massless px and py states, yielding a compensated Fermi surface with an ultrahigh Fermi velocity surpassing that of pristine graphene. Linear dichroism in ARPES measurements confirm the orbital polarization of these high-velocity bands. This makes the triangular antimonene a compelling platform for next-generation quantum and high-speed electronic technologies.

Keywords: Antimonene; Triangular lattice; 2D Materials; High Fermi velocity

100% | Bildschirmansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2026 > Dresden